C O M M U N I C A T I O N S
Table 2. Catalytic Asymmetric Mannich-Type Reaction of
Nitroacetates 3 and N-Boc Iminesa
Scheme 1 . Control Experiments Using Mononuclear Ni-Schiff
Base 1b-H2 or Ni-Salen 10a-10c Complexes
cat
temp time yieldb
C) (h) (%)
drc
(anti/syn) (anti)
% ee
entry
imine R1
Nu 3
(
×
mol %)
(°
1
2
3
4
5
6
7
8
9
Ph-
2a 3a
4-MeO-C6H4- 2b 3a
5
5
5
5
5
5
5
5
5
10
10
10
5
0
12 95
12 92
12 90
12 87
12 91
12 96
12 91
12 92
12 94
91:9
98
98
97
97
91
99
99
0
0
0
0
0
0
0
0
87:13
89:11
86:14
90:10
91:9
94:6
92:8 >99
88:12
4-Me-C6H4- 2c 3a
4-Cl-C6H4-
4-F-C6H4-
3-thienyl
Ph-
2d 3a
2e 3a
2f 3a
2a 3b
2a 3c
2a 3d
2g 3a
2h 3a
2i 3a
2a 3a
2a 3a
Acknowledgment. This work was supported by Grant-in-Aid
for Specially Promoted Research from MEXT. We thank Prof. S.
Kobayashi, Dr. R. Matsubara (X-ray crystallographic analysis), and
Prof. T. Ohwada, Dr. S. Uchiyama, and Mr. S. Handa (ESI-MS) at
the University of Tokyo for their kind help.
Ph-
Ph-
94
95
93
91
98
98
10d PhCH2CH2-
11d n-butyl
12d i-butyl
13e Ph-
-40 36 73 >97:3
-40 36 67 >97:3
-20 24 85 >97:3
0
13 91
90:10
88:12
14 Ph-
1
rt 12 93
Supporting Information Available: Experimental procedures,
spectral data of new compounds, determination of relative and absolute
configurations, ESI-MS data of Ni2-1b, and CIF of 4aa. This material
a Reaction was performed in THF (0.4 M on imines 2, 0.2-0.3 mmol
scale) with MS 4Å using the Ni2-1b complex stored over 3 months under
air at room temperature; 1.1 equiv of 3 was utilized unless otherwise noted.
b Isolated yield. c Determined by 1H NMR analysis of crude mixture. d Two
equivalents of 3a were utilized. e Reaction was run in 2.0 mmol scale.
References
(1) A review on R,â-diamino acids: Viso, A.; Ferna´ndez de la Pradilla, R.;
Garc´ıa, A.; Flores, A. Chem. ReV. 2005, 105, 3167.
(2) For reviews on direct Mannich-type reactions, see: (a) Marques, M. M.
B. Angew. Chem., Int. Ed. 2006, 45, 348. (b) Shibasaki, M.; Matsunaga,
S. J. Organomet. Chem. 2006, 691, 2089.
(3) With glycine Schiff base: (a) Bernardi, L.; Gothelf, A. S.; Hazell, R. G.;
Jørgensen, K. A. J. Org. Chem. 2003, 68, 2583. (b) Ooi, T.; Kameda,
M.; Fujii, J.-i.; Maruoka, K. Org. Lett. 2004, 6, 2397. (c) Shibuguchi, T.;
Mihara, H.; Kuramochi, A.; Ohshima, T.; Shibasaki, M. Chem. Asian J.
2007, 2, 794 and references therein. See also: (d) Salter, M. M.;
Kobayashi, J.; Shimizu, Y.; Kobayashi, S. Org. Lett. 2006, 8, 3533.
(4) (a) Singh, A.; Yoder, R. A.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc.
2007, 129, 3466. (b) Cutting, G. A.; Stainforth, N. E.; John, M. P.; Kociok-
Ko¨hn, G.; Willis, M. C. J. Am. Chem. Soc. 2007, 129, 10632.
(5) For other catalytic asymmetric approaches to R,â-diamino acids using
R-imino esters as electrophiles, see: (a) Nishiwaki, N.; Knudsen, K. R.;
Gothelf, K. V.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 2992.
(b) Chowdari, N. S.; Ahmad, M.; Albertshofer, K.; Tanaka, F.; Barbas,
C. F., III. Org. Lett. 2006, 8, 2839. See also ref 1 for other examples.
(6) Knudsen, K. R.; Jørgensen, K. A. Org. Biomol. Chem. 2005, 3, 1362.
(7) Reviews: (a) Cativiela, C.; Diaz-de-Villegas, M. D. Tetrahedron: Asym-
metry 1998, 9, 3517. (b) Ohfune, Y.; Shinada, T. Bull. Chem. Soc. Jpn.
2003, 76, 1115.
(8) Handa, S.; Gnanadesikan, V.; Matsunaga, S.; Shibasaki, M. J. Am. Chem.
The utility of the Ni2-1b complex was further demonstrated in
the Mannich-type reactions of other donors, such as malonates and
â-keto ester (eqs 2 and 3).14 High diastereo- and enantioselectivities
were achieved at room temperature using 2.5 mol % of Ni2-1b
(99-91% ee).15
Control experiments (Scheme 1) indicated that neither a mono-
nuclear Ni-1b-H2 complex nor Ni-salen 10a-10c complexes are
effective for the present reaction, resulting in poor reactivity,
diastereoselectivity, and enantioselectivity. We assume that coop-
erative functions of the two Ni metal centers in the Ni2-1b complex
would be important for achieving high stereoselectivity as well as
reactivity. Further mechanistic studies to elucidate the precise role
of the two Ni centers are ongoing.
In summary, we developed a bench-stable homodinuclear
Ni2-1b complex for direct Mannich-type reactions of nitroacetates,
giving R-tetrasubstituted anti-R,â-diamino acid surrogates in >99-
91% ee. The Ni2-1b complex was also applicable to Mannich-
type reactions of malonates and â-keto ester. Preliminary mecha-
nistic experiments suggested the importance of the two Ni centers
in the catalyst. Further mechanistic studies as well as applications
of the Ni2-1b complex in other asymmetric reactions are ongoing.
Soc. 2007, 129, 4900.
(9) Review of bifunctional metal catalysis: Shibasaki, M.; Matsunaga, S.
Chem. Soc. ReV. 2006, 35, 269 and references therein.
(10) ESI-MS analysis indicated that Schiff base 1b incorporated two Ni to
afford homodinuclear Ni2-1b complex. See Supporting Information.
(11) For a related bimetallic Ni-Cs2-salen complex in asymmetric Michael
reaction of malonates, see: Annamalai, V.; DiMauro, E. F.; Carroll, P.
J.; Kozlowski, M. C. J. Org. Chem. 2003, 68, 1973 and references therein.
(12) For other recent examples of bifunctional chiral mono-Ni(II) catalyst for
activation of 1,3-dicarbonyl compounds in Michael addition, see: (a)
Evans, D. A.; Seidel, D. J. Am. Chem. Soc. 2005, 127, 9958. (b) Evans,
D. A.; Mito, S.; Seidel, D. J. Am. Chem. Soc. 2007, 129, 11583.
(13) Freshly prepared Ni2-1b complex gave comparable results.
(14) There are many excellent chiral catalysts for direct Mannich-type reactions
with malonates, â-keto esters, and 1,3-diketones. For selected examples,
see: (a) Marigo, M.; Kjærsgaard, A.; Juhl, K.; Gathergood, N.; Jørgensen,
K. A. Chem.sEur. J. 2003, 9, 2359. (b) Uraguchi, D.; Terada, M. J. Am.
Chem. Soc. 2004, 126, 5356. (c) Hamashima, Y.; Sasamoto, N.; Hotta,
D.; Somei, H.; Umebayashi, N.; Sodeoka, M. Angew. Chem., Int. Ed. 2005,
44, 1525. (d) Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J. Am. Chem.
Soc. 2005, 127, 11256. (e) Song, J.; Wang, Y.; Deng, L. J. Am. Chem.
Soc. 2006, 128, 6048. (f) Sasamoto, N.; Dubs, C.; Hamashima, Y.;
Sodeoka, M. J. Am. Chem. Soc. 2006, 128, 14010. (g) Tillman, A. L.;
Ye, J.; Dixon, D. J. Chem. Commun. 2006, 1191. For other examples,
see reviews in ref 2.
(15) For the determination of relative and absolute configurations of products
4, 7, and 9, and ORTEP structure of 4aa, see Supporting Information.
JA710398Q
9
J. AM. CHEM. SOC. VOL. 130, NO. 7, 2008 2171