5328
J. M. Keith et al. / Bioorg. Med. Chem. Lett. 17 (2007) 5325–5329
The side chains to be attached to 14 were prepared sim-
ply by reductive amination of the precursor bromo-alde-
hyde with the desired amine (Scheme 3). Attachment of
the side chains onto 14 was accomplished via SNAr or by
coupling in the presence of CuI. The in vitro activity for
the products 9a–m and 16a–c is shown in Table 1.
References and notes
1. Jane-Llopis, E.; Hosman, C.; Jenkins, R.; Anderson, P.
Br. J. Psychiatry; J. Mental Sci. 2003, 183, 384.
2. Nierenberg, A. A.; Keefe, B. R.; Leslie, V. C.; Alpert, J.
E.; Pava, J. A.; Worthington, J. J., 3rd; Rosenbaum, J. F.;
Fava, M. J. Clin. Psychiatry 1999, 60, 221.
3. Fava, G. A.; Fabbri, S.; Sonino, N. Prog. Neuro-Psycho-
pharmacol. Biol. Psychiatry 2002, 26, 1019.
4. Beasley, C. M., Jr.; Koke, S. C.; Nilsson, M. E.; Gonzales,
J. S. Clin. Ther. 2000, 22, 1319.
From Table 1 it is apparent 5-substituted compounds
16a–c have much lower affinity for the rat and human
SERTs and for the H3 receptor than the corresponding
7-isomers 9a–m. Compounds having 1,3-disubstituted
pyridyl spacers 9a, c–e (relative spacing) were all less po-
tent than the corresponding 1,3-disubstituted phenylene
derivative 9b. Pyridine ring nitrogen position had a large
impact on H3 affinity, but a more modest impact on
hSERT binding. Greater H3 affinity was generally found
in the corresponding 1,4-disubstituted arylene deriva-
tives, but again, the presence and location of a ring
nitrogen had a significant effect on potency. Compounds
possessing either 2,4 or 2,5 substituted thiazole spacers
(9k and 9m respectively) in the side chain retained excel-
lent hSERT and reasonable H3 affinity. None of the
compounds prepared were as potent as 2 at the hista-
mine H3 receptor.
5. Zajecka, J. M. J. Clin. Psychiatry 2000, 61(Suppl. 2), 20.
6. Monti, J. M.; Jantos, H.; Boussard, M.; Altier, H.;
Orellana, C.; Olivera, S. Eur. J. Pharmacol. 1991, 205, 283.
7. Barbier, A. J.; Berridge, C.; Dugovic, C.; Laposky, A. D.;
Wilson, S. J.; Boggs, J.; Aluisio, L.; Lord, B.; Mazur, C.;
Pudiak, C. M.; Langlois, X.; Xiao, W.; Apodaca, R.;
Carruthers, N. I.; Lovenberg, T. W. Br. J. Pharmacol.
2004, 143, 649.
8. Stocking, E. M.; Miller, J. M.; Barbier, A. J.; Wilson, S. J.;
Boggs, J. D.; McAllister, H. M.; Wu, J.; Lovenberg, T. W.;
Carruthers, N. I.; Wolin, R. L. Bioorg. Med. Chem. Lett.
2007, 17, 3130.
9. (a) Keith, J. M.; Gomez, L. A.; Wolin, R. L.; Barbier,
A. J.; Wilson, S. J.; Boggs, J. D.; Mazur, C.; Fraser, I.
C.; Lord, B.; Aluisio, L.; Lovenberg, T. W.; Carruthers,
N. I. Bioorg. Med. Chem. Lett. 2007, 17, 2603; (b)
Keith, J. M.; Gomez, L. A.; Barbier, A. J.; Wilson, S.
J.; Boggs, J. D.; Lord, B.; Mazur, C.; Aluisio, L.;
Lovenberg, T. W.; Carruthers, N. I. Bioorg. Med. Chem.
Lett. 2007, 17, 4374.
We examined two of the more promising compounds, 9h
and 9k, in our H3 functional assay.7 Both compounds
were antagonists with pA2 values in the range of 7.7–7.9.
10. (a) Keith, J. M.; Gomez, L. A.; Letavic, M. A.; Ly, K. S.;
Jablonowski, J. A.; Seierstad, M.; Barbier, A. J.; Wilson,
S. J.; Boggs, J. D.; Fraser, I. C.; Mazur, C.; Lovenberg, T.
W.; Carruthers, N. I. Bioorg. Med. Chem. Lett. 2007, 17,
702; (b) Letavic, M. A.; Keith, J. M.; Jablonowski, J. A.;
Stocking, E. M.; Gomez, L. A.; Ly, K. S.; Miller, J. M.;
Barbier, A. J.; Bonaventure, P.; Boggs, J. D.; Wilson, S. J.;
Miller, K. L.; Lord, B.; McAllister, H. M.; Tognarelli, D.
J.; Wu, J.; Abad, M. C.; Schubert, C.; Lovenberg, T. W.;
Carruthers, N. I. Bioorg. Med. Chem. Lett. 2007, 17, 1047.
11. Letavic, M. A.; Keith, J. M.; Ly, K. S.; Barbier, A. J.;
Boggs, J. D.; Wilson, S. J.; Lord, B.; Lovenberg, T. W.;
Carruthers, N. I. Bioorg. Med. Chem. Lett. 2007, 17,
2566.
12. For other work involving benzyl amine H3 pharmaco-
phores, see: Miko, T.; Ligneau, X.; Pertz, H. H.; Arrang,
J.-M.; Ganellin, C. R.; Schwartz, J.-C.; Schunack, W.;
Starck, H. Bioorg. Med. Chem. 2004, 12, 2727, Earlier
work performed by our laboratories involved chemotypes
possessing benzyl amines, but these substituents were not
the dominant pharmacophoric functionality from an
activity standpoint: Apodaca, R.; Carruthers, N. I.;
Dvorak, C. A.; Rudolph, D. A.; Shah, C. R.; Xiao, W.
PCT Int. Appl. 2002, 155 pp, WO 2002012214.
Throughout our H3/SERT program, we have been able
to qualitatively correlate slow absorption into the brain
(or slow onset of pharmacological response) with brain
and tissue accumulation along with concomitantly high
volumes of distribution.20 We therefore elected to use
the 5-hydroxytryptophan (5-HTP) induced head twitch
model of SERT blockade21 to triage molecules on the
basis of desirable physical properties. Only those mole-
cules with a robust response in the head twitch model
after 1 h and little to no response after 24 h would be
profiled further. One hour post ip injection (10 mg/kg)
of 9h elicited no change in head twitch response
(HTR) as compared with control animals. After 24 h,
an HTR of 272% over control animals was observed.
These data suggest 9h inhibits the serotonin transporter,
but gets into the brain slowly either due to slow absorp-
tion through the peritoneum or slow accumulation into
the brain due to a very high volume of distribution.
Compound 9k did not show significant differences in
the HTR over controls at either time point. In an effort
to improve the physical properties of 9h, the piperidine
ring was replaced with morpholine and 4-fluoropiperi-
dine.22 When such substitutions were made in this series
(9i and 9j) an unacceptable decrease in H3 affinity was
observed.
13. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P.
J. Adv. Drug Delivery Rev. 1997, 23, 3.
14. Apodaca, R.; Dvorak, C. A.; Xiao, W.; Barbier, A. J.;
Boggs, J. D.; Wilson, S. J.; Lovenberg, T. W.; Carruthers,
N. I. J. Med. Chem. 2003, 46, 3938.
15. An SNAr reaction was not possible with some of our
examples due to electronically unfavorable substitution of
the aromatic ring. In those instances CuI was used as the
coupling agent.
16. It is important to carry out the reduction immediately due
to rapid oxidation of the amino ketone. For similar
examples: (a) Babad, E.; Carruthers, N. I.; Jaret, R. S.;
Steinman, M. Synthesis 1988, 966; (b) Lipton, S. H.;
Dutky, R. C. Chem. Ind. (London) 1972, 33.
In conclusion, we have prepared a series of novel dual
SERT inhibitor/H3 antagonists possessing rigidified H3
pharmacophores. The compounds described generally
were potent SERT inhibitors and some 9b, 9f, 9h, 9k,
and 9m were potent H3 antgonists. One compound,
9h, was modestly effective in the 5-HTP model of SERT
inhibition after 24 h, but lacked the desired physical
properties to warrant further development.