cloadditions of nitrone appeared recently, which offered an
opportunity to implement the reaction of nitrone and meth-
acrolein by the judicious choice of Lewis acids.6,7 Although
high endo selectivity was generally attained, these studies
suffered from poor regioselectivity or the preferential forma-
tion of 3,5-endo isomer without exception. Thus, despite the
intriguing structure of vicinally substituted 3,4-endo adduct
including one all-carbon quaternary center, the 3,4-endo
selective reaction still remains an elusive goal. It should also
be noted that chiral organocatalysts do not provide a solution
to this problem because of their poor ability to discriminate
the enantiotopic face of methacrolein.8,9
Figure 1. Chiral bis-titanium Lewis acids 1a and 1b.
Our approach to addressing this issue is the use of chiral
bis-titanium Lewis acid (S,S)-1a (Figure 1), which has
recently been revealed to catalyze various asymmetric
transformations including 1,3-dipolar cycloadditions of N-
benzyl nitrones and acrolein.10 Along the line of this research,
the reaction of methacrolein and N-benzylidenebenzylamine
N-oxide 2 (R ) CH2Ph) was conducted in the presence of a
catalytic amount of (S,S)-1a. The reaction was sluggish even
at 0 °C, providing the cycloadduct only in disappointingly
low yield with a moderate enantioselectivity of 75% ee
(Table 1, entry 1). However, the sterically congested 3,4-
endo adduct 3 was obtained exclusively, in contrast to the
previous reports from other groups. Intrigued by this unusual
outcome, we set out to realize a practical asymmetric 1,3-
dipolar cycloaddition reaction of methacrolein and nitrones.
Table 1. Comparison of the Reactivity and Selectivity of
N-Substituted Nitronesa
(3) For reviews, see: (a) Gothelf, K. V.; Jørgensen, K. A. Chem. ReV.
1998, 98, 863. (b) Gothelf, K. V.; Jørgensen, K. A. Chem. Commun. 2000,
1449. (c) Gothelf, K. V. In Cycloaddition Reactions in Organic Synthesis;
Kobayashi, S., Jørgensen, K. A., Eds.; Wiley-VCH: Weinheim, Germany,
2002; Chapter 6, p 211. (d) Kanemasa, S. In Cycloaddition Reactions in
Organic Synthesis; Kobayashi, S., Jørgensen, K. A., Eds.; Wiley-VCH:
Weinheim, Germany, 2002; Chapter 7, p 249. (e) Pellissier, H. Tetrahedron
2007, 63, 3235.
entry
R
catalyst
yield (%)c
ee (%)d
(4) For some recent examples employing bidentate dipolarophiles, see:
(a) Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am. Chem. Soc. 2004, 126, 718.
(b) Suga, H.; Nakajima, T.; Itoh, K.; Kakehi, A. Org. Lett. 2005, 7, 1431.
(c) Palomo, C.; Oiarbide, M.; Arceo, E.; Garc´ıa, J. M.; Lo´pez, R.; Gonza´lez,
A.; Linden, A. Angew. Chem., Int. Ed. 2005, 44, 6187. (d) Evans, D. A.;
Song, H.-J.; Fandrick, K. R. Org. Lett. 2006, 8, 3351.
(5) For an approach that circumvented this problem by using acrylimides,
see: Sibi, M. P.; Ma, Z.; Itoh, K.; Prabagaran, N.; Jasperse, C. P. Org.
Lett. 2005, 7, 2349.
(6) (a) Viton, F.; Bernardinelli, G.; Ku¨ndig, E. P. J. Am. Chem. Soc.
2002, 124, 4968. (b) Mita, T.; Ohtsuki, N.; Ikeno, T.; Yamada, T. Org.
Lett. 2002, 4, 2457. (c) Ohtsuki, N.; Kezuka, S.; Kogami, Y.; Mita, T.;
Ashizawa, T.; Ikeno, T.; Yamada, T. Synthesis 2003, 1462. (d) Kezuka, S.;
Ohtsuki, N.; Mita, T.; Kogami, Y.; Ashizawa, T.; Ikeno, T.; Yamada, T.
Bull. Chem. Soc. Jpn. 2003, 76, 2197. (e) Shirahase, M.; Kanemasa, S.;
Oderaotoshi, Y. Org. Lett. 2004, 6, 675. (f) Carmona, D.; Lamata, M. P.;
Viguri, F.; Rodr´ıguez, R.; Oro, L. A.; Balana, A. I.; Lahoz, F. J.; Tejero,
T.; Merino, P.; Franco, S.; Montesa, I. J. Am. Chem. Soc. 2004, 126, 2716.
(g) Carmona, D.; Lamata, M. P.; Viguri, F.; Rodr´ıguez, R.; Oro, L. A.;
Lahoz, F. J.; Balana, A. I.; Tejero, T.; Merino, P. J. Am. Chem. Soc. 2005,
127, 13386. (h) Carmona, D.; Lamata, M. P.; Viguri, F.; Ferrer, J.; Garc´ıa,
N.; Lahoz, F. J.; Mart´ın, M. L.; Oro, L. A. Eur. J. Inorg. Chem. 2006,
3155. (i) Carmona, D.; Lamata, M. P.; Viguri, F.; Rodr´ıguez, R.; Fischer,
T.; Lahoz, F. J.; Dobrinovitch, I. T.; Oro, L. A. AdV. Synth. Catal. 2007,
349, 1751.
1
2
3
4
5
PhCH2
Ph2CH
Ph2CH
1-NpCH2
(2-tolyl)2CH
(S,S)-1a
(S,S)-1a
(S,S)-1b
(S,S)-1b
(S,S)-1b
10
58
80
24
75
90
93
78
trace
a The reaction of nitrones and methacrolein (3 equiv) was performed in
the presence of 10 mol % of (S,S)-1 in CH2Cl2. b Determined by 1H NMR
spectroscopy. c Isolated yield. d Determined by HPLC analysis with use of
chiral columns after the reduction of the aldehyde moiety.
On the basis of the premise that poor reactivity of the
Lewis acid-catalyzed 1,3-dipolar cycloadditions of nitrone
is due to the unfavorable interaction of Lewis acid and
electronegative oxygen of nitrone,11 we assumed that kinetic
destabilization of a Lewis acid-nitrone complex by steric
repulsion between the N-substituent on nitrone and the ligand
of Lewis acid catalyst might be an effective approach to
increase the reactivity (Scheme 2).
With this consideration in mind, the N-benzyl group on
nitrone was replaced by a sterically more demanding
N-diphenylmethyl group, which was anticipated not to
change the electronic property of the dipole significantly.12
To our delight, the reaction proceeded smoothly and the
cycloadduct was obtained in a remarkably higher yield of
58%, maintaining the preferential formation of one regio-
(7) For a B3LYP/6-31G study, see: Barba, C.; Carmona, D.; Garc´ıa, J.
I.; Lamata, M. P.; Mayoral, J. A.; Salvatella, L.; Viguri, F. J. Org. Chem.
2006, 71, 9831.
(8) (a) Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2000, 122, 9874. (b) Karlsson, S.; Ho¨gberg, H.-E. Tetrahedron:
Asymmetry 2002, 13, 923. (c) Karlsson, S.; Ho¨gberg, H.-E. Eur. J. Org.
Chem. 2003, 2782. (d) Chow, S. S.; Nevalainen, M.; Evans, C. A.; Johannes,
C. W. Tetrahedron Lett. 2007, 48, 277. (e) Rios, R.; Ibrahem, I.; Vesely,
J.; Zhao, G.-L.; Co´rdova, A. Tetrahedron Lett. 2007, 48, 5701.
(9) Sakakura, A.; Suzuki, K.; Ishihara, K. AdV. Synth. Catal. 2006, 348,
2457.
(10) (a) Hanawa, H.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc.
2003, 125, 1708. (b) Hanawa, H.; Uraguchi, D.; Konishi, S.; Hashimoto,
T.; Maruoka, K. Chem.-Eur. J. 2003, 9, 4405. (c) Kano, T.; Hashimoto,
T.; Maruoka, K. J. Am. Chem. Soc. 2005, 127, 11926. (d) Kano, T.;
Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2006, 128, 2174.
(11) For a similar strategy with achiral bulky Lewis acid, see: Kanemasa,
S.; Ueno, N.; Shirahase, M. Tetrahedron Lett. 2002, 43, 657.
(12) Tamura, O.; Kanoh, A.; Yamashita, M.; Ishibashi, H. Tetrahedron
2004, 60, 9997.
4806
Org. Lett., Vol. 9, No. 23, 2007