Communication
ChemComm
10 For interesting discussions on radical propagation with aryldiazonium
salts, see: (a) M. Majek, F. Filace and A. Jacobi von Wangelin, Beilstein
J. Org. Chem., 2014, 10, 981; (b) M. A. Cismesia and T. Yoon, Chem. Sci.,
2015, 6, 5426. For a general discussion on catalysis in radical reactions,
see: (c) A. Studer and A. S. Curran, Angew. Chem., Int. Ed., 2016, 55, 58.
11 R. Cai, M. Lu, E. Y. Aguilera, Y. Xi, N. G. Akhmedov, J. L. Petersen,
H. Chen and X. Shi, Angew. Chem., Int. Ed., 2015, 54, 8772.
12 The yields for iodoaryl substrates were described as ‘‘low’’ in note (19)
of ref. 11. In our hands, 3n and 3o were isolated, respectively; in 14%
yield and 10% yield with Shi’s conditions. See the ESI† for details.
13 For Pd-catalysed Suzuki–Miyaura reactions with diazonium salts with
conditions compatibles with iodoaryls, see: (a) S. Sengupta and
S. K. Sadhukhan, Tetrahedron Lett., 1998, 39, 715; (b) F.-X. Felpin
and E. Fouquet, Adv. Synth. Catal., 2008, 350, 863. For a review on
Pd-catalysed Suzuki–Miyaura reactions with diazonium salts, see:
(c) H. Bonin, E. Fouquet and F.-X. Felpin, Adv. Synth. Catal., 2011,
353, 3063.
14 See Scheme 3 for results obtained for 3p and 3q using the best
conditions for p-iodoaryldiazonium tetrafluoroborate [Pd/BaCO3
(0.5 mol%), MeOH, rt, 12 h, ref. 13b]. See the ESI† for details.
15 In their cross-coupling of vinyl golds with diazonium salts under
photoredox conditions, Shin et al. measured quantum yields of 0.31
and 1.21 employing, respectively, PPh3AuCl or a PPh3AuCl/AgOTf
mixture as catalyst. This indicates that radical chain processes are
probably favoured by cationic gold species. See ref. 7d.
bromoaryls, iodoaryls, aldehydes and alcohols. The utility of
this method was demonstrated by performing the synthesis of a
biaryl with a 2-iodobenzyl alcohol moiety, which could not be
efficiently obtained using the methods described previously in
the literature. The resulting compound 3o was efficiently
labelled by 13C–carbon monoxide, confirming the orthogonality
with Pd-catalysed reactions. Aiming toward the synthesis of new
potential biotracers,23a gold-catalysed couplings of this 3-(hydroxy-
methyl)-4-iodobenzenediazonium salt 1o with biomolecule-based
boronic acids are being currently explored.
This study was supported by the MESR (doctoral fellowship),
and by a public grant from the French Agence Nationale de la
Recherche within the context of the Investments for the Future
Program, referenced ANR-10-LABX-57 and named TRAIL.
Notes and references
1 Modern Gold Catalyzed Synthesis, ed. A. S. K. Hashmi and F. D. Toste,
Wiley-VCH, Weinheim, Germany, 2012.
2 For selected recent reviews, see: (a) N. D. Shapiro and F. D. Toste, Synlett,
2010, 675; (b) M. Rudolph and A. S. K. Hashmi, Chem. Soc. Rev., 2012, 16 This catalyst was selected as a photosensitizer to rule out any
41, 2448; (c) C. Obradors and A. M. Echavarren, Chem. Commun., 2014,
potential 2,20-bipyridine leaching.
50, 16; (d) A. Fu¨rstner, Acc. Chem. Res., 2014, 47, 925; (e) R. Dorel and 17 S. Dupuy, L. Crawford, M. Bu¨hl, A. M. Z. Slawin and S. P. Nolan, Adv.
A. M Echavarren, Chem. Rev., 2015, 115, 9028. Synth. Catal., 2012, 354, 2380.
3 M. Joost, A. Amgoune and D. Bourissou, Angew. Chem., Int. Ed., 18 For the transmetalation of boronic acids with gold fluoride com-
2015, 54, 15022. plexes, see ref. 9a.
4 For reviews, see: (a) M. N. Hopkinson, A. D. Gee and V. Gouverneur, 19 For an example of visible-light-mediated gold-catalysis with
Chem. – Eur. J., 2011, 17, 8248; (b) K. M. Engle, T.-S. Mei, X. Wang and J.-Q.
Yu, Angew. Chem., Int. Ed., 2011, 50, 1478. For a selected example, see:
diazonium salts, see: L. Huang, F. Rominger, M. Rudolph and
A. S. K. Hashmi, Angew. Chem., Int. Ed., 2015, 55, 4808.
(c) L. T. Ball, G. C. Lloyd-Jones and C. A. Russel, Science, 2012, 337, 1644. 20 Second-order rate constants for the reduction of 1a (4-MeO–) and 1b
5 (a) D. F. DeTar and T. Kosuge, J. Am. Chem. Soc., 1958, 80, 6072;
(b) M. P. Doyle, J. K. Guy, K. C. Brown, S. N. Mahapatro, C. M. VanZyl
and J. R. Pladziewicz, J. Am. Chem. Soc., 1987, 109, 1536; (c) M. N. Weaver,
S. Z. Janicki and P. A. Petillo, J. Org. Chem., 2001, 66, 1138; (d) G. Schmidt,
(4-NO2–) by potassium ferrocyanide have been previously measured
in aqueous, phosphate-buffered solution at pH 7.0 (ref. 5b). The
values were 7.1 ꢀ 10ꢁ5 Mꢁ1 sꢁ1 and 6.95 Mꢁ1
s
ꢁ1, respectively,
indicating a faster reduction of almost 105 fold.
S. Gallon, S. Esnouf, J.-P. Bourguoin and P. Chenevier, Chem. – Eur. J., 21 Compared to results obtained at 30 1C in the dark, conversion and
2009, 15, 2101; (e) M. D. Levin, S. Kim and F. D. Toste, ACS Cent. Sci.,
2016, 2, 293.
6 For recent reviews on photoredox catalysis, see: (a) C. K. Prier,
D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322;
(b) M. N. Hopkinson, B. Sahoo, J.-L. Li and F. Glorius, Chem. – Eur. J.,
2014, 20, 3874; (c) R. A. Angnes, Z. Li, C. R. Correia and G. B. Hammond,
Org. Biomol. Chem., 2015, 13, 9152; (d) S. Fukuzumi and K. Ohkubo, Org.
yield were significantly lower when performed at 18 1C in the dark.
22 Reduction and homocoupling of the diazonium salts are the main
by-products in these reactions. However, depending on the photo-
sensitizer, degradation of the biaryl products was observed in some
cases, probably due to a prolonged exposure to photoredox condi-
tions. For example, using conditions A, 3q was isolated in 29% yield
of after 8 h and in 20% yield after 16 h.
Biomol. Chem., 2014, 12, 6059; (e) D. A. Nicewicz and T. M. Nguyen, ACS 23 (a) T. Cornilleau, H. Audrain, A. Guillemet, P. Hermange and E. Fouquet,
Catal., 2014, 4, 355; ( f ) T. Koike and M. Akita, Synlett, 2013, 2492.
7 (a) B. Sahoo, M. N. Hopkinson and F. Glorius, J. Am. Chem. Soc., 2013,
135, 5505; (b) M. N. Hopkinson, B. Sahoo and F. Glorius, Adv. Synth.
Catal., 2014, 356, 2794; (c) X.-Z. Shu, M. Zhang, Y. He, H. Frei and
F. D. Toste, J. Am. Chem. Soc., 2014, 136, 5844; (d) D. V. Patil, H. Yun
and S. Shin, Adv. Synth. Catal., 2015, 357, 2622; (e) Y. He, H. Wu and
F. D. Toste, Chem. Sci., 2015, 6, 1194; ( f ) A. Tlahuext-Aca,
M. N. Hopkinson, B. Sahoo and F. Glorius, Chem. Sci., 2016, 7, 89;
Org. Lett., 2015, 17, 354; (b) P. Hermange, A. T. Lindhardt, R. H. Taaning,
K. Bjerglung, D. Lupp and T. Skrydstrup, J. Am. Chem. Soc., 2011,
133, 6061; (c) S. D. Friis, R. H. Taaning, A. T. Lindhardt and
T. Skrydstrup, J. Am. Chem. Soc., 2011, 133, 18114; (d) S. D. Friis,
A. T. Lindhardt and T. Skrydstrup, Acc. Chem. Res., 2016, 49, 594;
(e) S. Kealey, A. Gee and P. W. Miller, J. Labelled Compd. Radiopharm.,
2014, 57, 195; ( f ) O. Rahman, J. Labelled Compd. Radiopharm., 2015,
58, 86.
(g) S. Kim, J. Rojas-Martin and F. D. Toste, Chem. Sci., 2016, 7, 85; 24 The access to organogold(III) complexes by oxidative addition of
(h) J. Um, H. Yun and S. Shin, Org. Lett., 2016, 18, 484; (i) A. Tlahuext-Aca,
M. N. Hopkinson, R. A. Garza-Sancheza and F. Glorius, Chem. – Eur. J.,
2016, 22, 5909; ( j) B. Alcaide, O. Almendros, E. Busto and A. Luna, Adv.
Synth. Catal., 2016, 358, 1526.
8 For a DFT study, see: Q. Zhang, Z.-Q. Zhang, Y. Fu and H.-Z. Yu, ACS
Catal., 2016, 6, 798.
9 For gold-catalysed biaryl syntheses with boronic acids and external
oxidants, see: (a) N. P. Mankad and F. D. Toste, J. Am. Chem. Soc.,
2010, 132, 12859; (b) M. Hofer, E. Gomez-Bengoa and C. Nevado,
Organometallics, 2014, 33, 1328; (c) Q. Wu, C. Du, Y. Huang, X. Liu,
Z. Long, F. Song and J. You, Chem. Sci., 2015, 6, 288.
diazonium salts has been recently described. Thus, oxidative addi-
tion prior to transmetalation cannot be completely excluded. See
(a) L. Huang, F. Rominger, M. Rudolph and A. S. K. Hashmi, Chem.
Commun., 2016, 52, 6435; (b) E. O. Asomoza-Solis, J. Rojas-Ocampo,
R. A. Toscano and S. Porcel, Chem. Commun., 2016, 52, 7295.
25 For selected examples of the biaryl reductive elimination of gold
complexes, see: (a) J. Vicente, M. D. Bermu`dez, J. Escribano,
M. P. Carrillo and P. G. Jones, J. Chem. Soc., Dalton Trans., 1990,
3083; (b) J. Vicente, M. D. Bermu`dez and J. Escribano, Organometallics,
1991, 10, 3380; (c) W. J. Wolfe, M. S. Winston and F. D. Toste, Nat.
Chem., 2014, 6, 159.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2016