A R T I C L E S
Saha et al.
machines, in the form of chemical,6 electrochemical,7 or
photochemical8 inputs, is usually employed to bias the random
thermal motion in order to obtain directed movements of the
machine’s components, although molecular systems wherein the
energy input can be converted directly into controlled motion
are available.9 Another important requirement is the ability to
detect and control the specific molecular actuations in response
to the applied stimulation by monitoring suitable output signals.
Mechanically interlocked molecules, such as rotaxanes and
catenanes,10 are one of the most suitable candidates for
molecular machines because (i) the mechanical bond allows a
large variety of mutual arrangements of the molecular compo-
nents, while conferring stability on the system; (ii) the inter-
locked architecture limits the amplitude of the intercomponent
motion in the three dimensions; (iii) the stability of a specific
arrangement (co-conformation11) is determined by the strength
of the intercomponent interactions;12 and (iv) such interactions
can be modulated by external stimulation.13 These systems, by
virtue of their electrical properties and bi- or multistable
behavior, are also attractive as nanoscale switches for mole-
cular electronics14 and nanoelectromechanical systems15
(NEMS).
In a bistable [2]rotaxane, the competitive affinity of a
macrocyclic ring with two distinct recognition sites on the thread
component allows the macrocycle to translate between them,
generating a nanoscale mechanical motion. Systems of this type,
termed molecular shuttles,16 constitute the most common
implementation of the molecular machine concept with artificial
molecules.17 The primary requirement for generating such a
controllable motion of the ring component and the detection of
two separate translational isomers of a bistable [2]rotaxane is a
large difference in the affinity of the macrocycle between the
(5) Astumian, R. D.; Ha¨nggi, P. Phys. Today 2002, 55 (11), 33-39.
(6) Recent examples of chemically-driven molecular machines: (a) Thordarson,
P.; Bijsterveld, E. J. A.; Rowan, A. E.; Nolte, R. J. M. Nature 2003, 424,
915-918. (b) Badjic´, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F.
Science 2004, 303, 1845-1849. (c) Hernandez, J. V.; Kay, E. R.; Leigh,
D. A. Science 2004, 306, 1532-1537. (d) Garaudee, S.; Silvi, S.; Venturi,
M.; Credi, A.; Flood, A. H.; Stoddart, J. F. ChemPhysChem 2005, 6, 2145-
2152. (e) Liu, Y.; Flood, A. H.; Bonvallet, P. A.; Vignon, S. A.; Northrop,
B. H.; Tseng, H.-R.; Jeppesen, J. O.; Huang, T. J.; Brough, B.; Baller, M.;
Magonov, S.; Solares, S. D.; Goddard, W. A.; Ho, C.-M., Stoddart, J. F. J.
Am. Chem. Soc. 2005, 127, 9745-9759. (f) Fletcher, S. P.; Dumur, F.;
Pollard, M. M.; Feringa, B. L. Science 2005, 310, 80-82. (g) Leigh, D.
A.; Lusby, P. J.; Slawin, A. M. Z.; Walker, D. B. Chem. Commun. 2005,
4919-4921. (h) Nguyen, T. D.; Tseng, H.-R.; Celestre, P. C.; Flood, A.
H.; Liu, Y.; Stoddart, J. F.; Zink, J. I. Proc. Natl. Acad. Sci. U.S.A. 2005,
102, 10029-10034. (i) Marlin, D. S.; Cabrera, D. G.; Leigh, D. A.; Slawin,
A. M. Z. Angew. Chem., Int. Ed. 2006, 45, 77-83. (j) Marlin, D. S.;
Cabrera, D. G.; Leigh, D. A.; Slawin, A. M. Z. Angew. Chem., Int. Ed.
2006, 45, 1385-1390. (k) Brough, B.; Northrop, B. H.; Schmidt, J. J.;
Tseng, H.-R.; Houk, K. N.; Stoddart, J. F.; Ho, C.-M. Proc. Natl. Acad.
Sci. U.S.A. 2006, 103, 8583-8588. (l) Cheng, K. W.; Lai, C. C.; Chiang,
P. T.; Chiu, S. H. Chem. Commun. 2006, 2854-2856. (m) Badjic´, J. D.;
Ronconi, C. M.; Stoddart, J. F.; Balzani, V.; Silvi, S.; Credi, A. J. Am.
Chem. Soc. 2006, 128, 1489-1499. (n) Sindelar, V.; Silvi, S.; Kaifer, A.
E. Chem. Commun. 2006, 2185-2187. (o) Nguyen, T. D.; Leung, K. C.
F.; Liong, M.; Pentecost, C. D.; Stoddart, J. F.; Zink, J. I. Org. Lett. 2006,
8, 3363-3366.
(7) Recent examples of electrochemically-driven molecular machines: (a)
Altieri, A.; Gatti, F. G.; Kay, E. R.; Leigh, D. A.; Paolucci, F.; Slawin, A.
M. Z.; Wong, J. K. Y. J. Am. Chem. Soc. 2003, 125, 8644-8654. (b)
Steuerman, D. W.; Tseng, H.-R.; Peters, A. J.; Flood, A. H.; Jeppesen, J.
O.; Nielsen, K. A.; Stoddart, J. F.; Heath, J. R. Angew. Chem., Int. Ed.
2004, 43, 6486-6491. (c) Poleschak, I.; Kern, J.-M.; Sauvage, J.-P. Chem.
Commun. 2004, 474-476. (d) Liu, Y.; Flood, A. H.; Stoddart, J. F. J. Am.
Chem. Soc. 2004, 126, 9150-9151. (e) Katz, E.; Lioubashevsky, O.;
Willner, I. J. Am. Chem. Soc. 2004, 126, 15520-15532. (f) Hawthorne,
M. F.; Zink, J. I.; Skelton, J. M.; Bayer, M. J.; Liu, C.; Livshits, E.; Baer,
R.; Neuhauser, D. Science 2004, 303, 1849-1851. (g) Tseng, H.-R.;
Vignon, S. A.; Celestre, P. C.; Perkins, J.; Jeppesen, J. O.; Di Fabio, A.;
Ballardini, R.; Gandolfi, M. T.; Venturi, M.; Balzani, V.; Stoddart, J. F.
Chem.sEur. J. 2004, 10, 155-172. (h) Iijima, T.; Vignon, S. A.; Tseng,
H.-R.; Jarrosson, T.; Sanders, J. K. M.; Marchioni, F.; Venturi, M.; Apostoli,
E.; Balzani, V.; Stoddart, J. F. Chem.sEur. J. 2004, 10, 6375-6392. (i)
Jeon, W. S.; Kim, E.; Ko, Y. H.; Hwang, I. H.; Lee, J. W.; Kim, S. Y.;
Kim, H. J.; Kim, K. Angew. Chem., Int. Ed. 2005, 44, 87-91. (j) Letinois-
Halbes, U.; Hanss, D.; Beierle, J. M.; Collin, J.-P.; Sauvage, J.-P. Org.
Lett. 2005, 7, 5753-5756. (k) Sobransingh, D.; Kaifer, A. E. Org. Lett.
2006, 8, 3247-3250.
(10) Catenanes, Rotaxanes and Knots; Sauvage, J.-P., Dietrich-Buchecker, C.,
Eds.; Wiley-VCH: Weinheim, 1999.
(11) For a definition of co-conformation, see: Fyfe, M. C. T.; Stoddart, J. F.
Acc. Chem. Res. 1997, 30, 393-401.
(12) (a) Busch, D. H.; Stephenson, N. A. Coord. Chem. ReV. 1990, 100, 119-
154. (b) Lindsey, J. S. New J. Chem. 1991, 15, 153-180. (c) Philp, D.;
Stoddart, J. F. Synlett 1991, 445-458. (d) Hunter, C. A. J. Am. Chem.
Soc. 1992, 114, 5303-5311. (e) Anderson, S.; Anderson, H. L.; Sanders,
J. K. M. Acc. Chem. Res. 1993, 26, 469-475. (f) Bisson, A. P.; Carver, F.
J.; Hunter, C. A.; Waltho, J. P. J. Am. Chem. Soc. 1994, 116, 10292-
10293. (g) Hunter, C. A. Angew. Chem., Int. Ed. Engl. 1995, 34, 1079-
1081. (h) Schneider, J. P.; Kelly, J. W. Chem. ReV. 1995, 95, 2169-2187.
(i) Philp, D.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1996, 35, 1154-
1196. (j) Kolchinski, A. G.; Alcock, N. W.; Roesner, R. A.; Busch, D. H.
Chem. Commun. 1998, 1437-1438. (k) Fujita, M. Acc. Chem. Res. 1999,
32, 53-61. (l) Rebek, J., Jr. Acc. Chem. Res. 1999, 32, 278-286. (m)
Templated Organic Synthesis; Diederich, F., Stang, P. J., Eds.; Wiley-
VCH: Weinheim, 1999. (n) Nakash, M.; Watson, Z. C.; Feeder, N.; Teat,
S. J.; Sanders, J. K. M. Chem.sEur. J. 2000, 6, 2112-2119. (o) Sanders,
J. K. M. Pure Appl. Chem. 2000, 72, 2265-2274. (p) Bong, D. T.; Clark,
T. D.; Granja, J. R.; Ghadiri, M. R. Angew. Chem. 2001, 113, 1016-1041;
Angew. Chem., Int. Ed. 2001, 40, 988-1011. (q) Prins, L. J.; Reinhoudt,
D. N.; Timmerman, P. Angew. Chem., Int. Ed. 2001, 40, 2382-2426. (r)
Seidel, S. R.; Stang, P. J. Acc. Chem. Res. 2002, 35, 972-983. (s) Stoddart,
J. F.; Tseng, H.-R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4797-4800. (t)
Furlan, R. L. E.; Otto, S.; Sanders, J. K. M. Proc. Natl. Acad. Sci. U.S.A.
2002, 99, 4801-4804. (u) Joester, D.; Walter, E.; Losson, M.; Pugin, R.;
Merkle, H. P.; Diederich, F. Angew. Chem. 2003, 115, 1524-1528; Angew.
Chem., Int. Ed. 2003, 42, 1486-1490. (v) Hogg, L.; Leigh, D. A.; Lusby,
P. J.; Morelli, A.; Parsons, S.; Wong, J. K. Y. Angew. Chem., Int. Ed.
2004, 43, 1218-1221. (w) Zheng, X.; Mulcahy, M. E.; Horinek, D.;
Galeotti, F.; Magnera, T. F.; Michl, J. J. Am. Chem. Soc. 2004, 126, 4540-
4542.
(8) Recent examples of photochemically driven molecular machines: (a)
Brouwer, A. M.; Fazio, S. M.; Frochot, C.; Gatti, F. G.; Leigh, D. A.;
Wong, J. K. Y.; Wurpel, G. W. H. Pure Appl. Chem. 2003, 75, 1055-
1060. (b) van Delden, R. A.; Koumura, N.; Schoevaars, A.; Meetsma, A.;
Feringa, B. L. Org. Biomol. Chem. 2003, 1, 33-35. (c) Perez, E. M.;
Dryden, D. T. F.; Leigh, D. A.; Teobaldi, G.; Zerbetto, F. J. Am. Chem.
Soc. 2004, 126, 12210-12211. (d) Abraham, W.; Grubert, L.; Grummt,
U. W.; Buck, K. Chem.sEur. J. 2004, 10, 3562-3568. (e) Mobian, P.;
Kern, J.-M.; Sauvage, J.-P. Angew. Chem., Int. Ed. 2004, 43, 2392-2395.
(f) van Delden, R. A.; ter Wiel, M. K. J.; Pollard, M. M.; Vicario, J.;
Koumura, N.; Feringa, B. L. Nature 2005, 437, 1337-1340. (g) Wang,
Q.-C.; Qu, D.-H.; Ren, J.; Chen, K.; Tian, H. Angew. Chem., Int. Ed. 2004,
43, 2661-2665. (h) Collin, J.-P.; Jouvenot, D.; Koizumi, M.; Sauvage,
J.-P. Eur. J. Inorg. Chem. 2005, 1850-1855. (i) Qu, D.-H.; Wang, Q.-C.;
Tian, H. Angew. Chem., Int. Ed. 2005, 44, 5296-5299. (j) Murakami, H.;
Kawabuchi, A.; Matsumoto, R.; Ido, T.; Nakashima, N. J. Am. Chem. Soc.
2005, 127, 15891-15899. (k) Murakami, H.; Kawabuchi, A.; Matsumoto,
R.; Ido, T.; Nakashima, N. J. Am. Chem. Soc. 2005, 127, 15891-15899.
(l) Muraoka, T.; Kinbara, K.; Aida, T. Nature 2006, 440, 512-515. (m)
Vicario, J.; Walko, M.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc.
2006, 128, 5127-5135. (n) Balzani, V.; Clemente-Leo´n, M.; Credi, A.;
Ferrer, B.; Venturi, M.; Flood, A. H.; Stoddart, J. F. Proc. Natl. Acad. Sci.
U.S.A. 2006, 103, 1178-1183. (o) Balzani, V.; Clemente-Leo´n, M.; Credi,
A.; Semeraro, M.; Venturi, M.; Tseng, H.-R.; Wenger, S.; Saha, S.; Stoddart,
J. F. Aust. J. Chem. 2006, 59, 193-206.
(13) Balzani, V.; Credi, A.; Silvi, S.; Venturi, M. Chem. Soc. ReV. 2006, 35,
1135-1149.
(14) Bistable catenanes and rotaxanes have been employed as switches in a range
of devices and across different environments. See: (a) Collier, C. P.;
Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly, K.; Sampaio, J.; Raymo,
F. M.; Stoddart, J. F.; Heath, J. R. Science, 2000, 289, 1172-1175. (b)
Pease, A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.; Heath,
J. R. Acc. Chem. Res. 2001, 34, 434-444. (c) Luo, Y.; Collier, C. P.;
Jeppesen, J. O.; Neilsen, K. A.; DeIonno, E.; Ho, G.; Perkins, J.; Tseng,
H.-R.; Yamamoto, T.; Stoddart, J. F.; Heath, J. R. Chem. Phys. Chem. 2002,
3, 519-525. (d) Diehl, M. R.; Steuerman, D. W.; Tseng, H.-R.; Vignon,
S. A.; Star, A.; Celestre, P. C.; Stoddart, J. F.; Heath, J. R. Chem. Phys.
Chem. 2003, 4, 1335-1339. (e) Tseng, H.-R.; Wu, D.; Fang, N.; Zhang,
X.; Stoddart, J. F. Chem. Phys. Chem. 2004, 5, 111-116. (f) Steuerman,
D. W.; Tseng, H.-R.; Peters, A. J.; Flood, A. H.; Jeppesen, J. O.; Nielsen,
K. A.; Stoddart, J. F.; Heath, J. R. Angew. Chem., Int. Ed. 2004, 43, 6486-
6491. (g) Flood, A. H.; Peters, A. J.; Vignon, S. A.; Steuerman, D. W.;
Tseng, H.-R.; Kang, S.; Heath, J. R.; Stoddart, J. F. Chem.sEur. J. 2004,
10, 6558-6464. (h) Flood, A. H.; Stoddart, J. F.; Steuerman, D. W.; Heath,
J. R. Science 2004, 306, 2055-2056. (i) Jang, S. S.; Kim, Y. H.; Goddard,
W. A., III; Flood, A. H.; Laursen, B. W.; Tseng, H.-R.; Stoddart, J. F.;
Jeppesen, J. O.; Choi, J. W.; Steuerman, D. W.; DeIonno, E.; Heath, J. R.
J. Am. Chem. Soc. 2005, 127, 1563-1575. (j) Green, J. E.; Choi, J. W.;
Boukai, A.; Bunimovich, Y.; Johnston-Halperin, E.; DeIonno, E.; Luo, Y.;
Sheriff, B. A.; Xu, K.; Shin, Y. S.; Tseng, H.-R.; Stoddart, J. F.; Heath, J.
R. Nature 2007, 445, 414-417.
(9) Katz, E.; Baron, R.; Willner, I.; Richke, N.; Levine, R. D. Chem. Phys.
Chem. 2005, 6, 2179-2189.
9
12160 J. AM. CHEM. SOC. VOL. 129, NO. 40, 2007