M. Prakesch et al. / Bioorg. Med. Chem. 16 (2008) 9596–9602
9601
compound 42 was also able to demonstrate its inhibitory activity
in the Boyden chamber invasion assay, indicative of its ability to
inhibit cell movement on a three-dimensional scale and/or by
reducing the cells’ ability to produce extracellular matrix degrad-
ing enzymes, such as matrix metalloproteinases. Although the pre-
cise mechanism of action of 42 is not clear at this stage, it certainly
serves as a good starting point in developing next generation deriv-
atives and warrants further investigation.
Acknowledgments
This study was conducted with the support of the NRC Genom-
ics and Health Initiative, Canadian Cancer Society (CCS), National
Cancer Institute of Canada (NCIC), Canadian Institutes of Health Re-
search (CIHR), and Ontario Institute for Cancer Research (OICR)
through funding provided by the Government of Ontario. The
Structural Genomics Consortium is
a registered charity (No.
1097737) that receives funds from the Canadian Institutes for
Health Research, the Canadian Foundation for Innovation, Genome
Canada through the Ontario Genomics Institute, GlaxoSmithKline,
Karolinska Institutet, the Knut and Alice Wallenberg Foundation,
the Ontario Innovation Trust, the Ontario Ministry for Research
and Innovation, Merck, the Novartis Research Foundation, the
Swedish Agency for Innovation Systems, the Swedish Foundation
for Strategic Research, and the Wellcome Trust.
Figure 6. The effect of compound 42 on the MDA231-M cell motility. Wound
healing assay of MDA231-M cells treated with or without the presence of 42
(25 lM). Arrows indicative of remaining wound area.
3. Summary
With the goal of obtaining diverse architectures from the indo-
line scaffold, several modular approaches were developed. This al-
lowed us to generate a wide variety of indoline-based bicyclic and
tricyclic compounds. To extend the scope of these methods on solid
phase for high-throughput generation of indoline-based libraries,
further work is in progress. The highly diverse collection obtained
in this program (through the solution phase synthesis) was then
examined in a search of chemical modulators of FAK activity. To-
ward this objective, the collection was subjected to full-length
FAK inhibition assay and this led to the discovery of a novel class
of moderate small molecule inhibitor of FAK (compound 42). To
explore the scope of 42 further, it was also investigated as a mod-
ulator of cell migration through the wound healing assay and
showed a significant inhibitory activity of cell migration. Moreover,
Supplementary data
Experimental details and full characterization data for all new
compounds are provided. This material is available free of charge
via the internet. Supplementary data associated with this article
References and notes
1. Fishman, M. C.; Porter, J. A. Nature 2005, 437, 491.
2. Tate, E. W. Signal Transduct. 2006, 6, 144.
3. Pawson, T.; Nash, P. Gene Dev. 2000, 14, 1027.
4. Pawson, T.; Scott, J. D. Science 1997, 278, 2075.
5. Arkin, M. Curr. Opin. Chem. Biol. 2005, 9, 317.
6. Arkin, M. R.; Randal, M.; DeLano, W. L.; Hyde, J.; Luong, T. N.; Oslob, J. D.;
Raphael, D. R.; Taylor, L.; Wang, J.; McDowell, R. S.; Wells, J. A.; Braisted, A. C.
Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 1603.
7. Arkin, M. R.; Wells, J. A. Nat. Rev. Drug Discov. 2004, 3, 301.
8. Schreiber, S. L. Chem. Eng. News 2003, 819, 51.
9. Schreiber, S. L. Nat. Chem. Biol. 2005, 1, 64.
10. Tolliday, N.; Clemons, P. A.; Ferraiolo, P.; Koehler, A. N.; Lewis, T. A.; Li, X.;
Schreiber, S. L.; Gerhard, D. S.; Eliasof, S. Cancer Res. 2006, 66, 8935.
11. Schimmer, A. D.; Thomas, M. P.; Hurren, R.; Gronda, M.; Pellecchia, M.; Pond, G.
R.; Konopleva, M.; Gurfinkel, D.; Mawji, I. A.; Brown, E.; Reed, J. C. Cancer Res.
2006, 66, 2367.
12. Gan, Z.; Reddy, P. T.; Quevillon, S.; Couve-Bonnaire, S.; Arya, P. Angew. Chem.
Int. Ed. 2005, 44, 1366.
13. Reddy, P. T.; Quevillon, S.; Gan, Z.; Forbes, N.; Leek, D. M.; Arya, P. J. Comb.
Chem. 2006, 8, 856.
14. Somei, M.; Yamada, F. Nat. Prod. Rep. 2004, 21, 278.
15. Maier, M. E. Angew. Chem. Int. Ed. 2000, 39, 2073.
16. Creighton, C. J.; Zapf, C. W.; Bu, J. H.; Goodman, M. Org. Lett. 1999, 1, 1407.
17. Creighton, C. J.; Reitz, A. B. Org. Lett. 2001, 3, 893.
18. Cai, X.; Lietha, D.; Ceccarelli, D. F.; Karginov, A. V.; Rajfur, Z.; Jacobson, K.; Hahn,
K. M.; Eck, M. J.; Schaller, M. D. Mol. Cell. Biol. 2008, 28, 201.
19. Tilghman, R. W.; Parsons, J. T. Semin. Cancer Biol. 2008, 18, 45.
20. Han, E. K.; McGonigal, T. Anticancer Agents Med. Chem. 2007, 7, 681.
21. Chatzizacharias, N. A.; Kouraklis, G. P.; Theocharis, S. E. Exp. Opin. Ther. Targets
2007, 11, 1315.
22. van Nimwegen, M. J.; van de Water, B. Biochem. Pharmacol. 2007, 73, 597.
23. Mitra, S. K.; Schlaepfer, D. D. Curr. Opin. Cell. Biol. 2006, 18, 516.
24. Cohen, L. A.; Guan, J. L. Curr. Cancer Drug Targets 2005, 5, 629.
25. Garron, M. L.; Arthos, J.; Guichou, J. F.; McNally, J.; Cicala, C.; Arold, S. T. J. Mol.
Biol. 2008, 375, 1320.
Figure 7. Effect of compound 42 on MDA231-M cell invasion. Boyden chamber
invasion assay of MDA231-M cells treated with or without the presence of
26. Lietha, D.; Cai, X.; Ceccarelli, D. F.; Li, Y.; Schaller, M. D.; Eck, M. J. Cell 2007, 129,
1177.
27. Prutzman, K. C.; Gao, G.; King, M. L.; Iyer, V. V.; Mueller, G. A.; Schaller, M. D.;
Campbell, S. L. Structure 2004, 12, 881.
compound 42 (25
lM). Cells treated with compound 42 demonstrated a significant
reduction in their ability to invade. (*P < 0.05 compound 42 vs DMSO, N = 6).