Angewandte
Chemie
[1]P. A. Searle, T. F. Molinski, J. Am. Chem. Soc. 1995, 117, 8126 –
8131.
[2]For recent efforts in the total synthesis of phorboxazoles A and
B, see: a) B. Wang, C. J. Forsyth, Org. Lett. 2006, 8, 5223; b) D.-
R. Li, D.-H. Zhang, C.-Y. Sun, J.-W. Zhang, L. Yang, J. Chen, B.
Liu, C. Su, W.-S. Zhou, G.-Q. Lin, Chem. Eur. J. 2006, 12, 1185 –
1204; c) A. B. Smith III, T. M. Raszler, J. P. Ciavarri, T. Hirose, T.
Ishikawa, Org. Lett. 2005, 7, 4399 – 4402; d) B. S. Lucas, L. M.
Luther, S. D. Burke, J. Org. Chem. 2005, 70, 3757 – 3760; e) G.
Pattenden, M. A. Gonzalez, P. B. Little, D. S. Millan, A. T.
Plowright, J. A. Tornos, T. Ye, Org. Biomol. Chem. 2003, 1,
4173 – 4208.
[3]For recent examples for the construction of the bis-tetrahydro-
pyran region, see: a) N. Kawai, J.-M. Lagrange, M. Ohmi, J.
Uenishi, J. Org. Chem. 2006, 71, 4530 – 4537; b) J. S. Yadav, S. J.
Prakash, Y. Gangadhar, Tetrahedron: Asymmetry 2005, 16,
2722 – 2728; c) J. P. Vitale, S. A. Wolckenhauer, N. M. Do, S. D.
Rychnovsky, Org. Lett. 2005, 7, 3255 – 3258; d) I. Paterson, A.
Steven, C. A. Luckhurst, Org. Biomol. Chem. 2004, 2, 3026 –
3038; e) B. S. Lucas, L. M. Luther, S. D. Burke, Org. Lett. 2004, 6,
2965 – 2968.
Scheme 5. Completion of bis-tetrahydropyran fragment 16.
[4]For a review on the construction of tetrahydropyran rings in total
syntheses of natural products, see: P. A. Clarke, S. Santos, Eur. J.
Org. Chem. 2006, 2045 – 2053.
after optimization, the alkylation product was isolated in 74%
yield as a mixture of diastereomers. The completion of the
synthesis of bis-tetrahydropyran fragment 16 was accom-
plished by a stereoselective reduction by using TMSOTf and
Et3SiH.
In conclusion, we have developed a new methodology for
the production of 2,4,6-trisubstituted tetrahydropyrans that
are common to biologically active polyketides. Stereocom-
plementary tetrahydropyran fragments are accessed from a
common intermediate that is readily obtained through
electrophile-induced ether transfer that was previously
reported by our laboratory. The successful application of the
chemistry to the stereoselective synthesis of the C5–C15 bis-
tetrahydropyran region of phorboxazole A supports the
methodꢀs broad scope and scalability. Further applications
of this methodology are currently ongoing in our laboratory
and will be reported in due course.
[5]K. Liu, R. E. Taylor, R. Kartika, Org. Lett. 2006, 8, 5393 – 5395.
[6]a) S. V. Ley, B. Lygo, A. Wonnacott, Tetrahedron Lett. 1985, 26,
535 – 538; b) C. Greck, P. Grice, S. V. Ley, A. Wonnacott,
Tetrahedron Lett. 1986, 27, 5277 – 5280; c) S. V. Ley, B. Lygo, F.
Sternfeld, A. Wonnacott, Tetrahedron 1986, 42, 4333 – 4342.
[7]a) M. D. Lewis, J. K. Cha, Y. Kishi, J. Am. Chem. Soc. 1982, 104,
4976; b) A. B. Smith III, R. J. Fox, J. A. Vanecko, Org. Lett. 2005,
7, 3099 – 3102.
[8]For an elegant investigation of the effect of an alkoxy substituent
on the conformation of oxocarbonium ions, see: a) S. Chamber-
land, J. W. Ziller, K. A. Woerpel, J. Am. Chem. Soc. 2005, 127,
5322 – 5323; b) L. Ayala, C. G. Lucero, J. A. C. Romero, S. A.
Tabacco, K. A. Woerpel, J. Am. Chem. Soc. 2003, 125, 15521 –
15528.
[9]D. S. Brown, M. Bruno, R. J. Davenport, S. V. Ley, Tetrahedron
1989, 45, 4293 – 4308.
[10]G. Sabitha, K. Sudhakar, N. M. Reddy, M. Rajkumar, J. S. Yadav,
Tetrahedron Lett. 2005, 46, 6567 – 6570.
[11]K. R. Guertin, A. S. Kende, Tetrahedron Lett. 1993, 34, 5369 –
5372.
Received: May 7, 2007
Published online: August 2, 2007
[12]S. F. Martin, J. A. Dogde, Tetrahedron Lett. 1991, 32, 3017 – 3020.
[13]J. A. Dale, H. S. Mosher, J. Am. Chem. Soc. 1973, 95, 512 – 519.
Keywords: ether transfer · oxocarbonium ions ·
oxygen heterocycles · phorboxazoles · polyketides
.
Angew. Chem. Int. Ed. 2007, 46, 6874 –6877
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim