S. Kiren et al. / Tetrahedron Letters 48 (2007) 7456–7459
7459
5. (a) Cichewicz, R. H.; Valeriote, F. A.; Crews, P. Org. Lett.
2004, 6, 1951; (b) Pettit, G. R.; Xu, J.-P.; Chapuis, J.-C.;
Pettit, R. K.; Tackett, L. P.; Doubek, D. L.; Hooper, J. N.
A.; Schimdt, J. M. J. Med. Chem. 2004, 47, 1149.
6. (a) Perry, N. B.; Blunt, J. W.; Munro, M. H. G.; Pannell,
L. K. J. Am. Chem. Soc. 1988, 110, 4850; (b) Perry, N. B.;
Blunt, J. W.; Munro, M. H. G.; Thompson, A. M. J. Org.
Chem. 1990, 55, 223.
O
OH
O
OMe
Ag2O, MeI
CH2Cl2
H3C(H2C)4
N
H
H3C(H2C)4
N
H
58%
20
26
Scheme 7.
7. (a) Matsuda, F.; Tomiyoshi, N.; Yanagiya, M.; Matsu-
moto, T. Tetrahedron 1988, 44, 7063; (b) Kocienski, P.;
Jarowicki, K.; Marczak, S. Synthesis 1991, 1191.
8. (a) Roush, W. R.; Marron, T. G. Tetrahedron Lett. 1993,
34, 5421; (b) Roush, W. R.; Pfeifer, L. A. Org. Lett. 2000,
2, 859.
9. (a) Hoffmann, R. W.; Schlapbach, A. Tetrahedron Lett.
1993, 34, 7903; (b) Smith, A. B., III; Safonov, I. G.;
Corbett, R. M. J. Am. Chem. Soc. 2001, 123, 12426.
10. Huang, X.; Shao, N.; Palani, A.; Aslanian, R.; Buevich, A.
Org. Lett. 2007, 9, 2597; Cf. Jiang, X.; Fortanet, J. G.; De
Brabander, J. J. Am. Chem. Soc. 2005, 127, 11254–11255.
11. Shangguan, N.; Kiren, S.; Williams, L. J. Org. Lett. 2007,
9, 1093.
H
H
O
O
O
O
R
R
Me
R
N
N
H
NH
H
O
R
O
O
OtBu
24
25
Figure 3. Previous proposed hydrogen bonded networks.
Acknowledgements
12. Sohn, J.-H.; Waizumi, N.; Zhong, H. M.; Rawal, V. H. J.
Am. Chem. Soc. 2006, 127, 7290.
13. Kiren, S.; Williams, L. J. Org. Lett. 2005, 7, 2905.
14. (a) Hoye, T. R.; Hu, M. J. Am. Chem. Soc. 2003, 125,
9576; See also: (b) Bayer, A.; Maier, M. E. Tetrahedron
2004, 60, 6665.
15. (a) Bussolari, J. C.; Beers, K.; Lalan, P.; Murray, W. V.;
Gauthier, D.; McDonnell, P. Chem. Lett. 1998, 787; (b)
Porco, J. A., Jr.; Troast, D. M. Org. Lett. 2002, 4, 991.
16. For review see Cowden, C.; Paterson, I. Org. React. 1997,
51, 1.
Generous financial support from Merck & Co. and Rut-
gers, The State University of New Jersey is gratefully
acknowledged.
References and notes
1. (a) Shangguan, N.; Katukojvala, K.; Williams, L. J. J.
Am. Chem. Soc. 2003, 125, 7754; (b) Kolakowski, R. V.;
Shangguan, N.; Sauers, R. R.; Williams, L. J. J. Am.
Chem. Soc. 2006, 128, 5695.
17. Prepared from 5, see Ref. 11.
2. Tanaka, J.; Higa, T. Tetrahedron Lett. 1996, 37, 5535.
3. (a) Zoller, U.; Ben-Ishai, D. Tetrahedron 1975, 31, 863; (b)
Lokensgard, J. P.; Fischer, J. W.; Bartz, J. W. J. Org.
Chem. 1985, 50, 5609; (c) Katritzky, A. R.; Fan, W.-Q.;
Black, M.; Pernak, J. J. Org. Chem. 1992, 57, 547; (d)
Johnson, A. P.; Luke, R. W.; Steele, R. W.; Boa, A. N. J.
Chem. Soc., Perkin Trans. 1 1996, 883.
18. Zhong, H. M.; Shon, J.-H.; Rawal, V. H. J. Org. Chem.
2007, 72, 386.
19. This rationale has been invoked to account for the
stability of zampanolide (1); see Ref. 14a.
20. For an example relevant to zampanolide (1), see Smith, A.
B., III; Safonov, I. G.; Corbett, R. M. J. Am. Chem. Soc.
2001, 123, 12426.
4. (a) Piel, J.; Hui, D.; Wen, G.; Butzke, D.; Platzer, M.;
Fusetani, N.; Matsunaga, S. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 16222; (b) Piel, J.; Butzke, D.; Fusetani, N.;
Hui, D.; Platzer, M.; Wen, G.; Matsunaga, S. J. Nat.
Prod. 2005, 68, 472.
21. There is a twofold proviso, however. The reaction
conditions used to generate the carbinolamide must be
compatible with isolation, and the other functionality
must not facilitate decomposition.