10.1002/ejoc.201900773
European Journal of Organic Chemistry
FULL PAPER
[2]
a) J. A. Ashenhurst, Chem. Soc. Rev. 2010, 39, 540-548; b) Q. Liu, R.
Jackstell, M. Beller, Angew. Chem. Int. Ed. 2013, 52, 13871-13873; c)
S. A. Girard, T. Knauber, C. J. Li, Angew. Chem. Int. Ed. 2014, 53, 74-
100; d) C. Liu, J. Yuan, M. Gao, S. Tang, W. Li, R. Shi, A. Lei, Chem.
Rev. 2015, 115, 12138-12204; e) S.-r. Guo, P. S. Kumar, M. Yang, Adv.
Synth. Catal. 2017, 359, 2-25. f) Y. Liu, H. Yi, A. Lei, Chin. J. Chem.
2018, 36, 692-697. g) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang,
A.K. Singh, A. Lei, Chem. Rev. 2017, 117(13), 9016-9085.
yields. The presence of electron-withdrawing groups will strongly
reduce the reactivity of diphenylmethanes. This strategy realizes
C-H functionalization of diarylmethanes by oxidative cross-
coupling to construct C-O bond. The highlight of the research is
that it successfully diminishes the usage of transition-metal
catalysts and harmful stoichiometric terminal oxidants, and can
be regarded as a typical example of green chemistry in oxidative
C−O coupling reaction. Furthermore, phthalides could also be
synthesized via intramolecular oxidative cyclization mediated by
DDQ.
[3]
a) C. Liu, L. Jin, A. Lei, Synlett 2010, 2010, 2527-2536; b) C. L. Sun, B.
J. Li, Z. J. Shi, Chem. Commun. 2010, 46, 677-685; c) X. S. Wang, Y.
Lu, H. X. Dai, J. Q. Yu, J. Am. Chem. Soc. 2010, 132, 12203-12205; d)
C. Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 2011, 111, 1780-1824; e)
X. Jie, Y. Shang, P. Hu, W. Su, Angew. Chem. Int. Ed. 2013, 52, 3630-
3633; f) C. Liu, D. Liu, A. Lei, Acc. Chem. Res. 2014, 47, 3459-3470; g)
A. Regev, H. Shalit, D. Pappo, Synthesis 2015, 47, 1716-1725; h) N. V.
Tzouras, I. K. Stamatopoulos, A. T. Papastavrou, A. A. Liori, G. C.
Vougioukalakis, Coordin. Chem. Rev. 2017, 343, 25-138.
Experimental Section
General experimental procedure (3): A 25-mL tube equipped with a
magnetic stirrer bar was added diphenylmethanes 1 (0.5 mmol), dry
carboxylic acid 2 (2.5 mmol), DDQ (22.7 mg, 20 mol%) and 4.0 mL of dry
DCE. After the air in the tube was replaced with O2, TBN (12 μL, 20
mol%) was added and the tube was sealed. The sealed tube was
placed in an oil-bath and heated at 100 oC until the reaction was
completed. Then the mixture was concentrated on a rotary evaporator.
[4]
a) J. Xie, H. Jiang, Y. Cheng, C. Zhu, Chem. Commun. 2012, 48, 979-
981; b) B. Zhang, Y. Cui, N. Jiao, Chem. Commun. 2012, 48, 4498-
4500; c) X. Zhang, L. Wang, Green Chem. 2012, 14, 2141; d) C. L. Sun,
Z. J. Shi, Chem. Rev. 2014, 114, 9219-9280; e) R. Narayan, K. Matcha,
A. P. Antonchick, Chem. Eur. J. 2015, 21, 14678-14693; f) Y. Qin, L.
Zhu, S. Luo, Chem. Rev. 2017, 117, 9433-9520; g) C. Xu, M. Li, S. Yi,
X. Hu, N. Sun, L. Jin, B. Hu, Z. Shen, Synlett 2018, 29, 1914-1920.
a) D. Walker, J. D. Hiebert, Chem. Rev. 1967, 67, 153-196; b) D. R.
Buckle, S. J. Collier, M. D. McLaws, John Wiley & Sons, Ltd., 2005, pp.
1-12; c) S. B. Bharate, Synlett 2006, 496-497.
The obtained residue was dissolved in
2 mL of ethanol, and
hydroxylamine hydrochloride (14 mg, 0.2 mmol) and pyridine (16 μL, 0.2
mmol) were added. The mixture was stirred at room temperature until the
by-product (diarylketones) was completely converted into oxime. Then
the mixture was concentrated and the residue was purified by column
chromatography (silica gel, PE-EtOAc) to afford the title compound.
[5]
[6]
[7]
a) J. H. P. Utley, G. G. Rozenberg, Tetrahedron 2002, 58, 5251-5265;
b) Z. L. Wang, X. L. An, L. S. Ge, J. H. Jin, X. Luo, W. P. Deng,
Tetrahedron 2014, 70, 3788-3792.
a) Y. H. Zhang, C. J. Li, J. Am. Chem. Soc. 2006, 128, 4242-4243; b) D.
Cheng, W. Bao, Adv. Synth. Catal. 2008, 350, 1263-1266; c) F. Benfatti,
M. G. Capdevila, L. Zoli, E. Benedetto, P. G. Cozzi, Chem. Commun.
2009, 5919-5921; d) L. Liu, P. E. Floreancig, Org. Lett. 2010, 12, 4686-
4689; e) D. Ramesh, U. Ramulu, S. Rajaram, P. Prabhakar, Y.
Venkateswarlu, Tetrahedron Lett. 2010, 51, 4898-4903; f) W.
Muramatsu, K. Nakano, C. J. Li, Org. Lett. 2014, 16, 644-644; g) H.
Wang, Y.-L. Zhao, L. Li, S. S. Li, Q. Liu, Adv. Synth. Catal. 2014, 356,
3157-3163.
General experimental procedure (5): Method (1): A 25-mL tube
equipped with a magnetic stirrer bar was charged with 2-benzylbenzoic
acid 5 (0.5 mmol), DDQ (34.0 mg, 30 mol%) and dry DCE (4.0 mL). After
the air in the tube was replaced with O2, TBN (18 μL, 30 mol%) was
added and the tube was sealed. The sealed tube was placed in an oil-
bath and heated at 100 oC until the reaction was completed. The mixture
was then concentrated on a rotary evaporator, and the residue was
purified by column chromatography (silica gel, PE-EtOAc) to afford the
title compound. Method (2): A 25-mL tube equipped with a magnetic
stirrer bar was charged with 2-benzylbenzoic acid 5 (0.5 mmol), DDQ
(136.2 mg, 1.2 equiv) and dry DCE (4.0 mL). The tube was sealed after
the air in it was replaced with N2. The sealed tube was placed in an oil-
bath and heated at 100 oC until the reaction was completed. The mixture
was then concentrated on a rotary evaporator, and the residue was
purified by column chromatography (silica gel, PE-EtOAc) to afford the
title compound.
[8]
[9]
a) D. Ramesh, U. Ramulu, K. Mukkanti, Y. Venkateswarlu, Tetrahedron
Lett. 2012, 53, 2904-2908; b) M. Lingamurthy, Y. Jagadeesh, K.
Ramakrishna, B. V. Rao, J. Org. Chem. 2016, 81, 1367-1377.
a) V. Kumar, A. Sharma, M. Sharma, U. K. Sharma, A. K. Sinha,
Tetrahedron 2007, 63, 9718-9723; b) Y. Li, W. Bao, Adv. Synth. Catal.
2009, 351, 865-868; c) H. Mo, W. Bao, Tetrahedron 2011, 67, 4793-
4799; d) H. Yi, Q. Liu, J. Liu, Z. Zeng, Y. Yang, A. Lei, ChemSusChem
2012, 5, 2143-2146; e) J. S. Li, Y. Xue, D. M. Fu, D. L. Li, Z. W. Li, W.
D. Liu, H. L. Pang, Y. F. Zhang, Z. Cao, L. Zhang, RSC Adv. 2014, 4,
54039-54042.
[10] a) Q. Chen, X. Wang, G. Yu, C. Wen, Y. Huo, Org. Chem. Front. 2018,
5, 2652-2656; b) Q. Chen, C. Wen, X. Wang, G. Yu, Y. Ou, Y. Huo, K.
Zhang, Adv. Synth. Catal. 2018, 360, 3590-3594.
Acknowledgments
[11] a) C. Hofler, C. Ruchardt, Liebigs Ann. 1996, 183-188; b) H. H. Jung, P.
E. Floreancig, Tetrahedron 2009, 65, 10830-10836; c) V. S. Batista, R.
H. Crabtree, S. J. Konezny, O. R. Luca, J. M. Praetorius, New J. Chem.
2012, 36, 1141; d) K. Ohkubo, A. Fujimoto, S. Fukuzumi, J. Am. Chem.
Soc. 2013, 135, 5368-5371; e) X. Guo, H. Zipse, H. Mayr, J. Am. Chem.
Soc. 2014, 136, 13863-13873; f) C. A. Morales-Rivera, P. E. Floreancig,
P. Liu, J. Am. Chem. Soc. 2017, 139, 17935-17944.
This project was supported by the National Natural Science
Foundation of China (21776260, 21773211 and 21773210) and
Natural
Science
Foundation
of
Zhejiang
Province
(LY17B060007).
Keywords: 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone •
Oxidation • Cross-coupling • Oxygen • Diarylmethanol ester
[12] a) T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 2005, 105,
2329-2363; b) P. Anastas, N. Eghbali, Chem. Soc. Rev. 2010, 39, 301-
312; c) H. Miyamura, K. Maehata, S. Kobayashi, Chem. Commun. 2010,
46, 8052-8054; d) Z. Shi, C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev.
2012, 41, 3381-3430.
[1] a) K. Godula, D. Sames, Science 2006, 312, 67-72; b) J. Yamaguchi, K.
Itami, A. D. Yamaguchi, Angew. Chem. Int. Ed. 2012, 51, 8960-9009.
This article is protected by copyright. All rights reserved.