they vary from ca. 800 Hz for 1a (R1 ) R2 ) H)2d and 5
kHz for 1b (R1 ) OMe, R2 ) H),5a,b up to >100 MHz for
1c (R1 ) R2 ) tBu).5c Now, in order to better emulate the
structure and function of a macroscopic gyroscope, we set
out to synthesize compound 2 (Figure 1). It is anticipated
that fully encapsulated rotators with polar groups (-F, NO2,
etc.) will exhibit interesting dielectric properties, as these
are expected to respond to electric, magnetic, and optic
stimuli.2a-c,3,6
As a first step toward a general synthesis of triply bridged
structures, we explored the functionalization of hexa-m-
phenol 3. We noticed that reaction of the hexaphenolate with
6 equiv of n-bromobutane or n-bromohexadecane in DMSO
at 363 K produced derivatives 4a and 4b in ca. 80% yield
within 15 min (Scheme 1). Encouraged by this and by
with 3.0 equiv of 1,8- and 1,10-dibromoalkanes. While the
reactions proceeded rapidly and cleanly, triple cyclization
led to the “open” structures 5a and 5b, with one meridional
(north-south) and two zonal (east-west) bridges. These
compounds were characterized by NMR and mass spectrom-
etry, and the structure was confirmed by single-crystal X-ray
diffraction in the case of 5b (Scheme 1).7
Recognizing the success of Gladysz et al.8 on the synthesis
of metal-centered gyroscopes (6a-c, Scheme 1) through
metathesis reactions,9 we decided to synthesize the ω-al-
kenyloxy derivatives 4c and 4d. We selected 6 and 10
ω-alkenyl carbon chains to explore the effect of the ring
closing metathesis reaction on the formation of 10 and 18
carbon bridges to form the required 28- and 36-membered
macrocyles. Unfortunately, metathesis reactions with PhCHd
RuCl2(PCy3)2 or PhCHdRuCl2(ImesH2)(PCy3)9 followed by
PdC-catalyzed hydrogenation yielded compounds 5b and 5c,
respectively, with zonal and meridional bridges. Given the
drawbacks of the symmetrically functionalized precursor,
next we investigated a directed meridional approach with
the asymmetric precursor 7 (Scheme 2).
Scheme 1
Scheme 2
molecular models suggesting that 8- and 10-carbon chains
should have no obvious strain, we explored a one-pot reaction
(2) (a) Khuong, T.-A.; Nun˜ez, J. E.; Godinez, C. E.; Garcia-Garibay,
M. A. Acc. Chem. Res. 2006, 39, 413. (b) Garcia-Garibay, M. A. Proc.
Natl. Acad. Sci. U.S.A. 2005, 102, 10771. (c) Garcia-Garibay, M. A. Top.
Curr. Chem. 2006, 262, 179. (d) Dominguez, Z.; Dang, H.; Strouse, M. J.;
Garcia-Garibay, M. A. J. Am. Chem. Soc. 2002, 124, 7719. (e) Godinez,
C. E.; Zepeda, G.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2002, 124,
4701. (f) Gardinier, J. R.; Pellechia, P. J.; Smith, M. D. J. Am. Chem. Soc.
2005, 127, 12448. (g) Zhu, H. F.; Wang, X. F.; Okamura, T. A.; Sun, W.
Y.; Ueyama, N. J. Coord. Chem. 2006, 59, 429. (h) Vaughan, O. P. H.;
Williams, F. J.; Bampos, N.; Lambert, R. M. Angew. Chem., Int. Ed. 2006,
45, 3779. (i) Setaka, W.; Sato, K.; Ohkubo, A.; Kabuto, C.; Kira, M. Chem.
Lett. 2006, 35, 596. (j) Horike, S.; Matsuda, R.; Tanaka, D.; Matsubara, S.;
Mizuno, M.; Endo, K.; Kitagawa, S. Angew. Chem., Int. Ed. 2006, 45, 7226.
(k) Sato, D.; Akutagawa, T.; Takeda, S.; Noro, S.; Nakamura, T. Inorg.
Chem. 2007, 46, 363.
(3) Analogous structures with polar rotators have properties analogous
to macroscopic compasses: (a) Dominguez, Z.; Khuong, T.-A. V.; Dang,
H.; Sanrame, C. N.; Nun˜ez, J. E.; Garcia-Garibay, M. A. J. Am. Chem.
Soc. 2003, 125, 8827. (b) Horansky, R. D.; Clarke, L. I.; Price, J. C.;
Khuong, T.-A. V.; Jarowski, P. D.; Garcia-Garibay, M. A. Phys. ReV. B
2005, 72, 014302. (c) Horansky, R. D.; Clarke, L. I.; Winston, E. B.; Price,
J. C.; Karlen, S. D.; Jarowski, P. D.; Santillan, R.; Garcia-Garibay, M. A.
Phys. ReV. B 2006, 74, 054306.
(4) (a) Abramenkov, A. V.; Almenningen, A.; Cyvin, B. N.; Cyvin, S.
J.; Jonvik, T.; Khaikin, L. S.; Roemming, C.; Vilkov, L. V. Acta Chem.
Scand. 1988, A42, 674. (b) Sipachev, V. A.; Khaikin, L. S.; Grikina, O. E.;
Nikitin, V. S.; Traettberg, M. J. Mol. Struct. 2000, 523, 1.
(5) (a) Nun˜ez, J. E.; Khuong, T.-A. V.; Campos, L. M.; Farfan, N.; Dang,
H.; Karlen, S. D.; Garcia-Garibay, M. A. Cryst. Growth Des. 2006, 6. 866.
(b) Khuong, T.-A. V.; Dang, H.; Jarowski, P. D.; Maverick, E. F.; Garcia-
Garibay, M. A. J. Am. Chem. Soc. 2007, 129, 839. (c) Khuong, T.-A. V.;
Zepeda, G.; Ruiz, R.; Khan, S. I.; Garcia-Garibay, M. A. Cryst. Growth
Des. 2004, 4, 15.
We envisioned the synthesis of compound 7 by Pd(0)-
catalyzed coupling of terminal alkyne 8 with iodophenylene
(6) Rozenbaum, V. M. SoV. Phys. JETP 1991, 72, 1028.
(7) Compound 2: C78H88O6, C7H8, 0.5 (C7H8), 0.15 (C6H6), colorless
plates, MW ) 1267.20, triclinic, P1h, a ) 11.6972(16) Å, b ) 18.1228(3)
Å, c ) 18.781(2)Å, R ) 111.3840(16)°, â ) 96.2430(3)°, γ ) 90.9480-
(3)°, Z ) 2, F_000 ) 1367, λ ) 0.71073, T ) 100(2) K, crystal size ) 0.2
× 0.2 × 0.1, R1 ) 0.0621, wR2 ) 0.1639 (all data). 5b. While plate-like
crystals of 5b from CHCl3 failed to give good data refinement, we were
able to obtain the connectivity and a reasonable packing arrangement:
C78H88O6, colorless plates, MW ) 1121.48, tetragonal, P-4, a ) 16.9165-
(7) Å, b ) 16.9165(7) Å, c ) 11.7976(10) Å, R ) 90.0°, â ) 90.0°, γ )
90.0°, Z ) 2, λ ) 0.71073, T ) 100(2) K, crystal size ) 0.3 × 0.2 × 0.1.
(8) (a) Wang, L.; Hampel, F.; Gladysz, J. A. Angew. Chem., Int. Ed.
2006, 45, 4372. (b) Narwara, A. J.; Shima, T.; Hampel, F.; Gladysz, J. A.
J. Am. Chem. Soc. 2006, 128, 4962. (c) Shima, T.; Hampel, F.; Gladysz, J.
A. Angew. Chem., Int. Ed. 2004, 43, 5537.
3560
Org. Lett., Vol. 9, No. 18, 2007