Angewandte
Chemie
catalysts (not shown in Table 1), most likely because of
formation of salen complexes or phosphinophenolate com-
plexes of rhodium. In situ IR spectroscopy of 4 showed bands
at 2074 and 2009 cmÀ1, which indicate the presence of a
dicarbonyl rhodium(I) species, in accordance with literature
data of similar complexes.[18]
Keywords: ditopic ligands · homogeneous catalysis ·
hydroformylation · supramolecular catalysis · wide bite angles
.
[1] Z. Freixa, P. W. N. M. van Leeuwen, Dalton Trans. 2003, 1890 –
1901.
[2] P. W. N. M. van Leeuwen, C. F. Roobeek, R. L. Wife, J. H. G.
Frijns, J. Chem. Soc. Chem. Commun. 1986, 31 – 33.
Ligands 4–6 show catalytic performance close to that of
PPh3 (Table 1, entry 12) in terms of both selectivity and rate.
Isomerization decreases when more ligand is used (Table 1,
entries 1 and 2), and the linear/branched ratio goes up.
Consistently, ligands 4–6 give higher l/b ratios than PPh3 (e.g.
3.4 for Table 1, entry 5 vs. 2.5 for entry 12), which may point
to an intramolecular interaction between the two salen or
salen-like fragments through hydrogen-bond interactions.
The assembled bidentate diphosphines 10–12 with their
calculated natural bite angles of 110–1208 indeed gave
higher l/b ratios than the corresponding monodentate ligands.
The initial linear/branched ratio for 11 was as high as 25
(Table 1, entry 7). Ligand 12 gave a more stable system with a
l/b ratio of 21. The rates are about half those of the
monodentate ligands, which is also true for Xantphos
(Table 1, entry 13) compared to PPh3; Xantphos typically
gives higher l/b ratios (25–60). Isomerization remains relativly
high for 10–12, which may be due to the low pressure applied
or to the presence of other RhI species. Indeed, the in situ
high-pressure IR spectra of complexes of 10 show the same
species as with 4 in low concentrations. The in situ IR spectra
of 6 and 12 both show the characteristic bands for a
[HRh(CO)2(arylphosphine)2] species at 2044, 1987 (broad,
two peaks), and 1956 cmÀ1 (6 shows a few more absorptions),
but in the spectrum of 12, the intensity of the bisequatorial
diphosphine species (2044 and 1987 cmÀ1) is considerably
stronger (fulfilling our expectations), at the expense of the
equatorial–apical species (1987 and 1956 cmÀ1). These find-
ings nicely explain the increased preference for the formation
of linear aldehyde with ligand 12.[17]
In summary, we have extended the number of ditopic
ligands that bind with their hard donor atoms N and O to an
assembly metal (herein zinc and titanium) and to a soft metal
such as rhodium(I) through their P donor atom. While the
class of compounds is not new, we have shown that by proper
selection, catalytically active and selective species can be
generated in a facile manner. MM calculations have shown
that assembly by tetrahedral zinc centers may lead to wide-
bite-angle diphosphine ligands. It was found that the assem-
blies indeed give high selectivities for linear product in the
rhodium-catalyzed hydroformylation of 1-octene. The
method presented herein is extremely versatile, as both the
building blocks of the ditopic ligands and the assembly metal
can be varied extensively. The synthesis of the diphosphine
ligands usually involves only three steps. Furthermore, the
assembly metal fragments can be modified by additional
donor molecules or additional anionic fragments, which could
be used to make the ligands chiral.
[3] a) B. Breit, W. Seiche, J. Am. Chem. Soc. 2003, 125, 6608 – 6609;
b) L. K. Knight, Z. Freixa, P. W. N. M. van Leeuwen, J. N. H.
Reek, Organometallics 2006, 25, 954 – 960; c) P. A. Duckmanton,
A. J. Blake, J. B. Love, Inorg. Chem. 2005, 44, 7708 – 7710.
[4] a) A. Kless, R. Kadyrov, A. Boerner, J. Holz, H. B. Kagan,
Tetrahedron Lett. 1995, 36, 4601 – 4602; b) A. Kless, C. Lefeber,
A. Spannenberg, R. Kempe, W. Baumann, J. Holz, A. Boerner,
Tetrahedron 1996, 52, 14599 – 14606; c) J. M. Takacs, D. S.
Reddy, S. A. Moteki, D. Palencia, H. Wu, J. Am. Chem. Soc.
2004, 126, 4494; d) D. H. Leung, R. G. Bergman, K. N. Ray-
mond, J. Am. Chem. Soc. 2007, 129, 2746 – 2747; e) X. Sun, D. W.
Johnson, D. L. Caulder, R. E. Powers, K. N. Raymond, E. H.
Wong, Angew. Chem. 1999, 111, 1386 – 1390; Angew. Chem. Int.
Ed. 1999, 38, 1303 – 1307; f) F. Lam, J. X. Xu, K. S. Chan, J. Org.
Chem. 1996, 61, 8414 – 8418; g) S. Chikkali, D. Gudat, M.
Niemeyer, Chem. Commun. 2007, 981 – 983.
[5] H. Gulyµs, J. Benet-Buchholz, E. C. Escudero-Adµn, Z. Freixa,
P. W. N. M. van Leeuwen, Chem. Eur. J. 2007, 13, 3424 – 3430.
[6] T. S. Koblenz, H. L. Dekker, C. G. de Koster, P. W. N. M. van
Leeuwen, J. N. H. Reek, Chem. Commun. 2006, 1700 – 1702.
[7] a) C. Claver, E. Fernandez, A. Gillon, K. Heslop, D. J. Hyett, A.
Martorell, A. G. Orpen, P. G. Pringle, Chem. Commun. 2000,
961 – 962; b) M. van den Berg, A. J. Minnaard, E. P. Schudde, J.
van Esch, A. H. M. de Vries, J. G. de Vries, B. L. Feringa, J. Am.
Chem. Soc. 2000, 122, 11539 – 11540; c) M. T. Reetz, G. Mehler,
Angew. Chem. 2000, 112, 4047 – 4049; Angew. Chem. Int. Ed.
2000, 39, 3889 – 3890.
[8] a) M. T. Reetz, T. Sell, A. Meiswinkel, G. Mehler, Angew. Chem.
2003, 115, 814 – 817; Angew. Chem. Int. Ed. 2003, 42, 790 – 793;
b) D. Peæa, A. J. Minnaard, J. A. F. Boogers, A. H. M. de Vries,
J. G. de Vries, B. L. Feringa, Org. Biomol. Chem. 2003, 1, 1087 –
1089; c) M. T. Reetz, X. Li, Angew. Chem. 2005, 117, 3019 – 3021;
Angew. Chem. Int. Ed. 2005, 44, 2959 – 2962; d) M. Kuil, P. E.
Goudriaan, P. W. N. M. van Leeuwen, J. N. H. Reek, Chem.
Commun. 2006, 4679 – 4681; e) V. F. Slagt, P. W. N. M. van Leeu-
wen, J. N. H. Reek, Angew. Chem. 2003, 115, 5777 – 5781; Angew.
Chem. Int. Ed. 2003, 42, 5619 – 5623.
[9] X.-B. Jiang, L. Lefort, P. E. Goudriaan, A. H. M. de Vries,
P. W. N. M. van Leeuwen, J. G. de Vries, J. N. H. Reek, Angew.
Chem. 2006, 118, 1245 – 1249; Angew. Chem. Int. Ed. 2006, 45,
1223 – 1227.
[10] M. Kranenburg, Y. E. M. van der Burgt, P. C. J. Kamer,
P. W. N. M. van Leeuwen, Organometallics 1995, 14, 3081 – 3089.
[11] M. Kranenburg, P. C. J. Kamer, P. W. N. M. van Leeuwen, D.
Vogt, W. Keim, J. Chem. Soc. Chem. Commun. 1995, 2177 – 2778.
[12] a) M. C. Harris, O. Geis, S. L. Buchwald, J. Org. Chem. 1999, 64,
6019 – 6022; b) Y. Guari, D. S. van Es, J. N. H. Reek, P. C. J.
Kamer, P. W. N. M. van Leeuwen, Tetrahedron Lett. 1999, 40,
3789 – 3790.
[13] C. P. Casey, G. T. Whiteker, Isr. J. Chem. 1990, 30, 299 – 304.
[14] C. JimØnez-Rodríguez, F. X. Roca, C. Bo, J. Benet-Buchholz,
E. C. Escudero-Adµn, Z. Freixa, P. W. N. M. van Leeuwen,
Dalton Trans. 2006, 268 – 278.
[15] X-ray structure determination: Crystals of 12 were obtained by
slow diffusion of cyclohexane into dichloromethane at room
temperature. Although the measured crystal was stable under
atmospheric conditions, it was prepared under inert conditions
and immersed in perfluoropolyether for manipulation. Measure-
ments were made on a Bruker–Nonius diffractometer equipped
Received: March 21, 2007
Published online: August 6, 2007
Angew. Chem. Int. Ed. 2007, 46, 7247 –7250
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim