Catalysis Science & Technology
Page 8 of 9
DOI: 10.1039/C3CY00484H
117, 2675–2676; b) M. L. Clarke, S. D. Phillips, J. A. Fuentes, Chem.
Eur. J. 2010, 16, 8002ꢀ8005; c) I. Carpenter, S. C. Eckelmann, M. T.
Kuntz, J. A. Fuentes, M. B. France and M. L. Clarke, Dalton Trans.
2012, 41, 10136ꢀ10140.
ligands was investigated next. The catalytic system derived from
CSꢀS,Sꢀ5 can be efficiently separated from product mixtures via
precipitation with hexanes or ultrafiltration. Both approaches
facilitate epoxide synthesis and raise the isolated product yield to
near quantitative in the initial run. Moreover, the recovered CSꢀ
S,Sꢀ5 catalyst was shown to be active in three subsequent batch
oxidation experiments, where feeding the system with fresh ferric
chloride and H2PDC lead to better results. A gradual loss of the
catalyst stereoselectivity and, to a lesser extent, activity was still
10 observed though. This can be attributed to a partial catalyst
deactivation as well as catalyst loss due to the required
manipulations in between catalytic runs. In order to overcome
these problems, the application of CSꢀS,Sꢀ5 in a continuous flow
membrane reactor is currently under investigation.
15 The carbosilane wedge linked DPEN ligand CSꢀS,Sꢀ6 has shown
the best performance in epoxidation reactions of the transꢀ
stilbenes 2a-d. This molecularly enlarged ligand closely mimics
the catalytic properties of the parent S,Sꢀ1 ligand by providing
full flexibility to the ligand. Moreover, this ligand has superior
20 solubility properties and remains entirely in solution upon mixing
with the other vital reaction ingredients ferric chloride and
H2PDC, allowing for its potential application in microꢀreactors.
In contrast to the parent S,Sꢀ1 ligand, CSꢀS,Sꢀ6 can be efficiently
recovered unchanged from the reaction medium and reused
25 afterwards. Still, the applied ligand recovery strategy in a
biphasic acetonitrileꢀhexanes system is accompanied by about
20% ligand loss per reaction run and requires the oxidation to be
carried out at moderate substrate conversion levels. Although it
was not exhaustively explored in this study, the size of this
30 molecularly enlarged ligand would allow for its separation from
reaction mixture by means of nanofiltration using a membrane
with MWCO lower than 1000 Da.[20]
Overall, this study has shown the delicacy in designing the proper
soluble supporting material for singleꢀsite homogeneous
35 catalysts. Where earlier we had shown that proximity effects can
be detrimental for the catalytic activity of preformed catalysts,[16b]
the current study has shown that care should be taken in the
immobilization of chiral ligands used for the in-situ formation of
catalysts. These and other considerations are currently employed
40 in the design of advanced supported versions of homogeneous
oxidation catalysts based on iron, where reuse of precious ligands
is more important than reuse of the metal.
60
65
70
75
80
[3] B. Koppenhoefer, V. Schurig, Org. Synth. 1993, 8, 434ꢀ441.
[4] a) A. W. Johnson, R. B. LaCount, J. Am. Chem. Soc. 1961, 83, 417–
423; b) V. K. Aggarwal, J. Richardson, Chem. Commun. 2003, 2644ꢀ
2651; c) V. K. Aggarwal and C. L. Winn, Acc. Chem. Res. 2004, 37,
611ꢀ620.
[5] a) G. De Faveri, G. Ilyashenko and M. Watkinson, Chem. Soc. Rev.
2011, 40, 1722–1760; b) R. W. Murray and M. Singh, Org. Synth.
1997, 74, 91ꢀ95; c) S. Colonna, N. Gaggero, L. Casella, G. Carrea,
and P. Pasta, Tetrahedron: Asymmetry 1993, 4, 1325ꢀ1330; d) T.
Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1980, 102, 5974ꢀ5976;
e) Z.ꢀX. Wang, Y. Tu, M. Frohn, J.ꢀR. Zhang, and Y. Shi. J. Am.
Chem. Soc. 1997, 119, 11224ꢀ11235.
[6] a) F. G. Gelalcha, B. Bitterlich, G. Anilkumar, M. K. Tse, and M.
Beller, Angew. Chem. Int. Ed. 2007, 46, 7293 –7296; b) F. G.
Gelalcha, G. Anilkumar, M. K. Tse, A. Bruckner, and M. Beller,
Chem. Eur. J. 2008, 14, 7687 – 7698.
[7] a) J. M. Fraile, Jo. I. García, J. A. Mayoral, and E. Pires in
Heterogenized Homogeneous Catalysts for Fine Chemicals
Production (Eds.: P. Barbaro and F. Liguori), Springer, London,
2010, pp. 65ꢀ121; b) N. Baig and R. S. Varma Chem. Commun.,
2012, Accepted Manuscript; c) H. L. Xie, Y. X. Fan, C. H. Zhou, Z.
X. Du, E. Z. Min, Z. H. Ge, and X. N. Li, Chem. Biochem. Eng. Q.
2008, 22, 25ꢀ39.
5
85 [8] For a specific example on the immobilization of DPEN ligands, see
C.ꢀF. Nie, J.ꢀS. Suo, Chin. J. Chem. 2005, 23, 315—320.
[9] a) T. J. Dickerson, N. N. Reed, K. D. Janda, Chem. Rev. 2002, 102,
3325–3344; b) J. K. Kassube, L. H. Gade, Top. Organomet. Chem.
2006, 20, 61ꢀ96; c) D. Astruc, F. Chardac, Chem. Rev. 2001, 101,
90
95
2991ꢀ3023; d) B. Helms and J. M. J. Frechet, Adv. Synth. Catal.
2006, 348, 1125ꢀ1148; e) R. van Heerbeek, P. C. J. Kamer, P. W. N.
M. van Leeuwen, and J. N. H. Reek, Chem. Rev. 2002, 102, 3717ꢀ
3756.
[10] a) V. A. Yazerski and R. J. M. Klein Gebbink in Heterogenized
Homogeneous Catalysts for Fine Chemicals Production (Eds.: P.
Barbaro and F. Liguori), Springer, London, 2010, pp. 171ꢀ201; b) R.
Haag, S. Roller in Polymeric Materials in Organic Synthesis and
Catalysis (Ed.: M.R. Buchmeiser), WileyꢀVCH, Weinheim, 2003, pp.
305ꢀ344.
100 [11] a) N. J. M. Pijnenburg, H. P. Dijkstra, G. van Koten and R. J. M.
Klein Gebbink, Dalton Trans. 2011, 40, 8896ꢀ8905; b) N. J. M.
Pijnenburg, M. Lutz, M. A. Siegler, A. Spek, G. van Koten, R. J. M.
Klein Gebbink, New J. Chem. 2011, 35, 2356ꢀ2365; c) M. A. N.
Virboul, M. Lutz, M. A. Siegler, A. L. Spek, G. van Koten, R. J. M.
105
Klein Gebbink., Eur. J. Chem. 2009, 15, 9981ꢀ9986, d) D. J. M.
Snelders, M. A. N. Virboul, R. Kreiter, C. Versluis, G. van Koten and
R. J. M. Klein Gebbink, Dalton Trans. 2012, 41, 2354ꢀ2359; e) A. V.
Gaikwad, V. Boffa, J.E. ten Elshof, G. Rothenberg, Angew. Chem.
Int. Ed. 2008, 47, 5407ꢀ5410; f) Y.ꢀC. Chen, T.ꢀF. Wu, J.ꢀG. Deng,
H. Liu, X. Cui, J. Zhou, Y.ꢀZ. Jiang, M. C. K. Choi, and A. S. C.
Chan, J. Org. Chem. 2002, 67, 5301ꢀ5306; g) J. Liu, Y. Zhou, Y. Wu,
X. Li and A. S. C. Chan, Tetrahedron: Asymmetry 2008, 19, 832ꢀ
837; h) W. Wang and Q. Wang, Chem. Commun. 2010, 46, 4616ꢀ
4618.
110
Acknowledgements
This work was supported by 7PCRD EU funds from the Marieꢀ
45 Curie Initial Training Network NANOꢀHOST (grant agreement
ITN 215193). The national research school combination catalysis
(NRSCC) is acknowledged for further financial support.
115 [12] A. Berger, R. J. M. Klein Gebbink, and G. van Koten, Top.
Organomet. Chem. 2006, 20, 1ꢀ37.
[13] A. F. AbdelꢀMagid, K. G. Carson, B. D. Harris, C. A. Maryanoff, R.
D. Shah, J. Org. Chem. 1996, 61, 3849ꢀ3862.
[14] P. Wijkens, J. T. B. H. Jastrzebski, P. A. van der Schaaf, R. Kolly, A.
Hafner, G. van Koten, Org. Lett. 2000, 11, 1621ꢀ1624.
References
[1] a) L. P. C. Nielsen and E. N. Jacobsen in Aziridines and Epoxides in 120
50
55
Organic Synthesis (Ed.: A. K. Yudin), WileyꢀVCH, Weinheim, 2006,
pp. 229ꢀ269; b) P. Crotti and M. Pineschi in Aziridines and Epoxides
in Organic Synthesis (Ed.: A. K. Yudin), WileyꢀVCH, Weinheim,
2006, pp. 271ꢀ313; c) V. V. Fokin and P. Wu in Aziridines and
Epoxides in Organic Synthesis (Ed.: A. K. Yudin), WileyꢀVCH, 125
Weinheim, 2006, pp. 443ꢀ477.
[15] J. Le Notre, J. J. Firet, L. A. Sliedregt, B. J. van Steen, G. van Koten,
R. J. M. Klein Gebbink, Org. Lett. 2005, 7, 363ꢀ366.
[16] a) A. W. Kleij, R. A. Gossage, J. T. B. H.Jastrzebski, J. Boersma, G.
van Koten, Angew. Chem. Int. Ed. 2000, 39, 176–178; b) A. W. Kleij,
R. A. Gossage, R. J. M. Klein Gebbink, N. Brinkmann, E. J. Reijerse,
U. Kragl, M. Lutz, A. L. Spek, G. van Koten, J. Am. Chem. Soc.
2000, 122, 12112–12124.
[2] Diols, aminoalcohols and diamines in catalysis: a) T. Ohkuma, H.
Ooka, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1995,
8
|
Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]