Communications
with 4,4-diethoxybut-1-yne[21] gave access to the desired
[1] In regard to the ketone:“No other functional group can rival its
versatility and utility.” See:P. J. Kocienski, Protecting Groups,
Thieme, Stuttgart, 2005.
[2] a) J. H. Babler, V. P. Liptak, N. Phan, J. Org. Chem. 1996, 61, 416;
b) F. G. Bordwell, Acc. Chem. Res. 1988, 21, 456.
[3] Modern Acetylene Chemistry (Eds.:P. J. Stang, F. Diederich),
VCH, Weinheim, 1995.
[4] Alkynes can readily be converted into ketones; see:R. C.
Larock, Comprehensive Organic Transformations, VCH, New
York, NY, 1999.
[5] For selected reviews, see:a) K. P. C. Vollhardt, Acc. Chem. Res.
1977, 10, 1; b) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996,
96, 49; c) S. Saito, Y. Yamamoto, Chem. Rev. 2000, 100, 2901.
[6] For selected reviews, see:a) B. M. Trost, M. J. Krische, Synlett
1998, 1; b) B. M. Trost, F. D. Toste, A. B. Pinkerton, Chem. Rev.
2001, 101, 2067.
propargylic alcohol 9 without disturbing the relatively sensi-
tive phthalide group. The diastereomeric ratio and absolute
configuration of this new stereocenter were determined by
formation of the methyl mandelate ester (see the Supporting
Information). Our initial plan was to forego the TBS group
(Scheme 4, omit step b) to access the hydroxy aldehyde 11 (in
the hemiacetal tautomer). Subjection of 11 to TMS-diazo-
methane and subsequent trapping with propylene oxide did
not give alkyne diol 3 directly as planned because of a
competitive destruction of the phthalide lactone with TMS-
diazomethane. For this reason, alcohol 9 was silylated,
followed by global reduction to the fully saturated chain.
Acid hydrolysis of the diethyl acetal furnished the silyl-
protected alkoxy aldehyde 10. Homologation of aldehyde 10
to the terminal alkyne without destruction of the phthalide
was accomplish by the mild Ohira–Bestmann[22] alkynylation.
Spiroketal precursor 3 was accessed in two steps from
alkyne 12. Addition of the alkyne to R-(+)-propylene oxide
assisted by a Lewis acid gave the corresponding homopro-
pargylic alcohol. Subsequent treatment with HCl effectively
removed the TBS group to provide diol 3.
[7] a) H.-Y. Jang, M. J. Krische, Acc. Chem. Res. 2004, 37, 653; b) J.
Montgomery, Acc. Chem. Res. 2000, 33, 467.
[8] a) A. Arnone, G. Assante, G. Nasini, O. Vajna de Pava, Phyto-
chemistry 1990, 29, 613; b) M. A. Gaudliana, L. H. Huang, T.
Kaneko, P. C. Watts, PCT Int. Appl. W0 9605204, 1996; c) T.
Adachi, I. Takagi, K. Kondo, A. Kawashima, A. Kobayashi, I.
Taneoka, S. Morimoto, B. M. Hi, Z. Chen, PCT Int. Appl. W0
9610020, 1996.
[9] M. J. Blaser, Clin. Infect. Dis. 1992, 15, 386.
In natural product synthesis, spiroketals are most com-
monly accessed by the alkoxylation of a ketone with pendant
alcohols. While this method is generally effective (and has
been used in all of the previous syntheses of spirolaxine), the
ketone diol precursor comes with the inherent chemoselec-
tivity issues associated with ketones. A complimentary alkyne
diol precursor (such as 3) would be inert to many of the
standard synthetic operations that would be incompatible
with a ketone. This type of spiroketalization of an alkyne was
first demonstrated by Utimoto.[23] Since its discovery, it has
been relatively underused in total synthesis[24] and methodo-
logical exploration.[25] We carried out the spiroketalization of
3 promoted by [PdCl2(PhCN)2] to give (+)-spirolaxine methyl
ether (1) in 79% yield. All spectroscopic data were in
agreement with the reported data.[8,12]
In conclusion, we have synthesized (+)-spirolaxine methyl
ether in 13 total steps using an alkyne-based strategy. The
stereochemistry in both the phthalide portion and the
spiroketal portion were established by ProPhenol catalyst-
controlled asymmetric alkynylation chemistry. The carbon
framework was constructed using terminal alkynes as nucle-
ophiles, and the spiroketal was formed using an internal
alkyne as an electrophilic ketone surrogate. This type of
alkyne strategy will help alleviate chemoselectivity issues of
ketones, and should be widely applicable to complex natural
product syntheses.
[10] A. Bava, M. Clericuzio, G. Giannini, L. Malpezzi, S. V. Meille, G.
Nasini, Eur. J. Org. Chem. 2005, 2292.
[11] K. A. Dekker, T. Inagaki, T. D. Gootz, K. Kanede, E. Nomura, T.
Sakakibara, S. Sakemi, Y. Sugie, Y. Yamauchi, N. Yoshikawa, N.
Kojima, J. Antibiot. 1997, 50, 833.
[12] a) J. E. Robinson, M. A. Brimble, Chem. Commun. 2005, 1560;
b) R. Nannei, S. Dallavalle, L. Merlini, A. Bava, G. Nasini, J.
Org. Chem. 2006, 71, 6277; c) K. A. Keaton, A. J. Phillips, Org.
Lett. 2007, 9, 2717.
[13] a) S. Niwa, K. Soai, J. Chem. Soc. Perkin Trans. 1 1990, 937;
b) G. M. R. Tombo, E. Didier, B. Loubinoux, Synlett 1990, 547;
c) N. K. Anand, E. M. Carreira, J. Am. Chem. Soc. 2001, 123,
9687; d) G. Lu, X. Li, W. L. Chan, A. S. C. Chan, Chem.
Commun. 2002, 172; e) G. Gao, D. Moore, R.-G. Xie, L. Pu,
Org. Lett. 2002, 4, 4143; f) L. Pu, Tetrahedron 2003, 59, 9873;
g) L. Pu, H.-B. Yu, Chem. Rev. 2001, 101, 757; h) B. M. Trost,
A. H. Weiss, A. J. von Wangelin, J. Am. Chem. Soc. 2006, 128, 8;
i) R. Takita, K. Yakura, T. Ohshima, M. Shibasaki, J. Am. Chem.
Soc. 2005, 127, 13760; j) G. Gao, Q. Wang, X.-Q. Yu, R.-G. Xie,
L. Pu, Angew. Chem. 2006, 118, 128; Angew. Chem. Int. Ed. 2006,
45, 122.
[14] H. Lindlar, Helv. Chim. Acta 1952, 35, 446.
[15] For a review, see:H. O. House, Modern Synthetic Reactions, 2nd
ed., W. A. Benjamin, Menlo Park, CA, 1972.
[16] Recent review:B. M. Trost, Z. T. Ball, Synthesis 2005, 853.
[17] V. Voorhees, R. Adams, J. Am. Chem. Soc. 1922, 44, 1397.
[18] K. Orito, M. Miyazawa, H. Suginome, Tetrahedron 1995, 51,
2489.
[19] A. Cowell, J. K. Stille, J. Am. Chem. Soc. 1980, 102, 4193.
[20] P. D. Noire, R. W. Franck, Synthesis 1980, 882.
[21] A. Stoller, C. Mioskowski, C. Sepulchre, F. Bellamy, Tetrahedron
Lett. 1990, 31, 361.
[22] a) S. Ohira, Synth. Commun. 1989, 19, 561; b) G. J. Roth, L.
Bernd, S. G. Mꢀller, H. J. Bestmann, Synthesis 2004, 59.
[23] K. Utimoto, Pure Appl. Chem. 1983, 55, 1845.
[24] B. M. Trost, D. B. Horne, M. J. Woltering, Angew. Chem. 2003,
115, 6169; Angew. Chem. Int. Ed. 2003, 42, 5987.
Received:June 15, 2007
Published online:August 23, 2007
Keywords: alkynes · asymmetric synthesis · natural products ·
.
spiro compounds · total synthesis
[25] B. Liu, J. K. De Brabander, Org. Lett. 2006, 8, 4907.
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 7664 –7666