MgSO4 and concentrated. The residue was purified by column
chromatography on silica gel to afford compounds 24a–f.
per well, 20 repeats) at 30 ◦C with an excitation filter at 340 nm and
an emission filter at 486 nm. Each measurement was performed
twice as duplicate or triplicate.
Compound 24a. Prepared according to general procedure
C. Deprotection: 22 (200 mg, 0.39 mmol) in a solution 75%
TFA–/CH2Cl2 (3 mL). Reductive amination: To a solution of
the deprotected tripeptide in MeOH–CH2Cl2 1 : 1 (4 mL) were
Acknowledgements
The authors thank J.-B. Cre´chet for a generous gift of the strain of
E. coli expressing the yeast FTase, Dr J. Ouazzani and S. Cortial
for the production and purification of recombinant yeast FTase,
Drs D. Gue´nard and F. Gue´ritte for their constant interest in this
work and CNRS for financial support.
˚
added: powdered 4 A molecular sieves (450 mg) and triethylamine
(55.0 lL, 0.39 mmol), 3a (116 mg, 0.39 mmol) and a solution
of sodium cyanoborohydride (50.0 mg, 0.79 mmol). After work-
up the residue was purified by column chromatography on silica
gel (CH2Cl2–MeOH 9.5 : 0.5) to afford 24a (225 mg, 94%) as a
1
colorless oil. H NMR (300 MHz, CDCl3) d 7.18–7.42 (m, 6H),
6.82 (bs, 1H), 6.74 (s, 1H), 4.78 (m, 1H), 4.62 (m, 1H), 4.13 (m,
4H), 3.73 (s, 3H), 3.63 (s, 3H), 3.60 (d, J = 14.0 Hz, 1H), 2.93–
3.49 (m, 6H), 2.80 (m, 3H), 2.45 (t, J = 7.0 Hz, 2H), 2.11 (m,
1H), 2.06 (s, 3H), 1.96 (m, 2H), 1.24 (m, 6H), 0.85 (d, J = 7.0 Hz,
3H), 0.80 (d, J = 7.0 Hz, 3H); 13C NMR (75 MHz, CDCl3) d
173.9, 173.0, 171.9, 171.6, 171.0, 146.2, 130.6, 136.5, 129.3 (2C),
128.8 (2C), 127.1, 122.6, 67.6, 61.4, 61.0, 54.0, 52.6, 51.6, 42.2,
40.0, 38.0, 35.4, 31.6, 31.3, 31.0, 29.8, 27.4, 19.4, 18.2, 15.4, 14.2,
14.1; HRMS calcd for C34H52N5O8S [M + H]+: 690.3537; found:
690.3521.
References and notes
1 (a) Y. Reiss, J. L. Goldstein, M. C. Seabra, P. J. Casey and M. S.
Brown, Cell, 1990, 62, 81–88; (b) F. Tamanoi, C. L. Gau, C. Jiang, H.
Edamatsu and J. Kato Stankiewicz, Cell. Mol. Life Sci., 2001, 58, 1636–
1649; (c) J. B. Gibbs, A. Oliff and N. E. Kohl, Cell, 1994, 77, 175–178;
(d) K. Zhu, A. D. Hamilton and S. M. Sebti, Curr. Opin. Invest. Drugs,
2003, 4, 1428–1435; (e) S. M. Sebti and A. D. Hamilton, Expert Opin.
Invest. Drugs, 2000, 9, 2767–2782.
2 R. T. Eastman, F. S. Buckner, K. Yokoyama, M. H. Gelb and W. C.
Van Voorhis, J. Lipid Res., 2006, 47, 233–240.
3 H. W. Park and L. S. Beese, Curr. Opin. Struct. Biol., 1997, 7, 873–880.
4 F. L. Zhang and P. J. Casey, Annu. Rev. Biochem., 1996, 65, 241–269.
5 S. Clarke, J. P. Vogel, R. J. Deschenes and J. Stock, Proc. Natl. Acad.
Sci. U. S. A., 1988, 85, 4643–4647.
General procedure D: Saponification
6 For review, see: (a) S. Ayral-Kaloustian and E. J. Salaski, Curr. Med.
Chem., 2002, 9, 1003–1032; (b) D. M. Leonard, J. Med. Chem., 1997, 40,
2971–2990; (c) I. M. Bell, J. Med. Chem., 2004, 47, 1869–1878; (d) H.
Waldmann and M. Thutewohl, Top. Curr. Chem., 2001, 211, 117–130.
7 (a) R. S. Bhide, D. V. Patel, M. M. Patel, S. P. Robinson, L. W. Hunihan
and E. M. Gordon, Bioorg. Med. Chem. Lett., 1994, 4, 2107–2112;
(b) D. V. Patel, E. M. Gordon, R. J. Schmidt, H. N. Weller, M. G.
Young, R. Zahler, M. Barbacid, J. M. Carboni, J. L. Gullo-Brown, L.
Hunihan, C. Ricca, S. Robinson, B. R. Seizinger, A. V. Tuomari and V.
Manne, J. Med. Chem., 1995, 38, 435–442; (c) D. V. Patel, M. G. Young,
S. P. Robinson, L. Hunihan, B. J. Dean and E. M. Gordon, J. Med.
Chem., 1996, 39, 4197–4210; (d) K. Hinterding, P. Hagenbuch, J. Retey
and H. Waldmann, Angew. Chem., Int. Ed., 1998, 37, 1236–1239; (e) M.
Schlitzer, M. Bohm, I. Sattler and H. M. Dahse, Bioorg. Med. Chem.,
2000, 8, 1991–2006; (f) M. Lannuzel, M. Lamothe, P. Schambel, C.
Etievant, B. Hill and M. Perez, Bioorg. Med. Chem. Lett., 2003, 13,
1459–1462; (g) M. Thutewohl, L. Kissau, B. Popkirova, I. M. Karaguni,
T. Nowak, M. Bate, J. Kuhlmann, O. Muller and H. Waldmann, Bioorg.
Med. Chem., 2003, 11, 2617–2626.
8 C. C. Huang, K. E. Hightower and C. A. Fierke, Biochemistry, 2000,
39, 2593–2602.
9 J. M. Dolence and C. D. Poulter, Proc. Natl. Acad. Sci. U. S. A., 1995,
92, 5008–5011.
10 S. B. Long, P. J. Casey and L. S. Beese, Nature, 2002, 419, 645–650.
11 M. Venet, D. End and P. Angibaud, Curr. Top. Med. Chem., 2003, 3,
1095–1102.
12 J. T. Hunt, C. Z. Ding, R. Batorsky, M. Bednarz, R. Bhide, Y. Cho,
S. Chong, S. Chao, J. Gullo-Brown, P. Guo, S. H. Kim, F. Y. Lee, K.
Leftheris, A. Miller, T. Mitt, M. Patel, B. A. Penhallow, C. Ricca, W. C.
Rose, R. Schmidt, W. A. Slusarchyk, G. Vite and V. Manne, J. Med.
Chem., 2000, 43, 3587–3595.
13 (a) T. S. Reid and L. S. Beese, Biochemistry, 2004, 43, 6877–6884;(b) T. S.
Reid, S. B. Long and L. S. Beese, Biochemistry, 2004, 43, 9000–9008.
14 For some examples, see: (a) S. B. Singh, D. L. Zink, J. M. Liesch, M. A.
Goetz, R. G. Jenkins, M. Nallin-Omstead, K. C. Silverman, G. F. Bills,
R. T. Mosley, J. B. Gibbs, G. Albers-Schonberg and R. B. Lingham,
Tetrahedron, 1993, 49, 5917–5926; (b) S. B. Singh, J. M. Liesch, R. B.
Lingham, K. C. Silverman, J. M. Sigmund and M. A. Goetz, J. Org.
Chem., 1995, 60, 7896–7901; (c) K. C. Silverman, H. Jayasuriya, C.
Cascales, D. Vilella, G. F. Bills, R. G. Jenkins, S. B. Singh and R. B.
Lingham, Bioorg. Biophys. Res. Commun., 1997, 232, 478–481.
15 B. Iddon and R. I. Ngochindo, Heterocycles, 1994, 38, 2487–2568.
16 I. G. C. Coutts, S. Jieng, C. D. Khandelwahl and M. L. Wood,
J. Heterocycl. Chem., 1994, 31, 857–860.
To a solution of 24a–f in THF–MeOH–H2O 1 : 1 : 1 was added
lithium hydroxide monohydrate (3.6 equiv.) at 0 C. After 1–2 h
◦
at this temperature and 1–16 h at room temperature, Amberlite
IRC 50 resin (H+) was added and the mixture was stirred until
pH = 7.0. Then, the reaction was filtered and the resin was washed
with MeOH (3×). Evaporation of the solvents afforded the target
compounds 2a–f.
Compound 2a. Prepared according to general procedure D.
24a (90.0 mg, 0.13 mmol) in THF–MeOH–H2O 1 : 1 : 1 (1.5 mL)
and lithium hydroxide monohydrate (20.0 mg, 0.47 mmol) at
0
◦C for 1 h and at room temperature for 1 h. After work-up,
1
2a (69.5 mg, 86%) was isolated as a colorless foam. H NMR
(250 MHz, CD3OD) d 7.13–7.38 (m, 5H), 6.68 (s, 1H), 4.86 (m,
1H), 4.33 (m, 1H), 3.67 (s, 3H), 3.61 (d, J = 14.0 Hz, 1H), 2.89–
3.34 (m, 6H), 2.74 (m, 3H), 2.49 (t, J = 8.0 Hz, 2H), 2.16 (m, 1H),
2.07 (s, 3H), 1.98 (m, 2H), 0.85 (m, 6H); 13C NMR (62.5 MHz,
CD3OD) d 181.6, 180.0, 177.9, 176.6, 172.8, 149.2, 138.0, 132.2,
130.5 (2C), 129.7 (3C), 122.3, 68.7, 55.7, 45.3, 42.2, 41.3, 38.7,
34.1, 32.8, 31.7, 31.2, 29.5, 28.0, 20.2, 19.4, 15.4; HRMS calcd for
C29H42N5O8S [M + H]+: 620.2754; found: 620.2762.
Yeast FTase assay
Assays were carried out on 96-well plates, prepared with Biomek
NKMC and Biomek 3000 from Beckman Coulter and read on
Wallac Victor fluorimeter from Perkin-Elmer. In each well, 20 lL
of farnesyl pyrophosphate (10 lM) was added to 180 lL of
a solution containing 2 lL of varied concentrations of 24a–
f and 2a–f (dissolved in DMSO) and 178 lL of a solution
composed of 0.1 mL of partially purified recombinant yeast FTase
(2.2 mg mL−1) and 7.0 mL of Dansyl-GCVLS peptide (in the
following buffer: 5.8 mM DTT, 12 mM MgCl2, 12 lM ZnCl2
and 0.09% (w/v) CHAPS, 53 mM Tris·HCl, pH 7.5). Then the
fluorescence development was recorded for 15 min (0.7 seconds
3308 | Org. Biomol. Chem., 2007, 5, 3299–3309
This journal is
The Royal Society of Chemistry 2007
©