C O M M U N I C A T I O N S
Table 2. Atom-Economical Amidation
Acknowledgment. We thank NIGMS (GM72586), Eli Lilly,
Johnson and Johnson, and Boehringer Ingelheim for support. T.R.
is a fellow of the Sloan Foundation and thanks the Monfort Family
Foundation for a Monfort Professorship.
Note Added after ASAP Publication. Reference 11c was added
on October 12, 2007.
Supporting Information Available: Experimental procedures and
full characterization of all new compounds (PDF). This material is
a Catalyst A (10 mol %), imidazole (10 mol %), DIPEA (30 mol %),
t-BuOH (0.1 M), 40 °C, 24 h. b Catalyst A (10 mol %), HOAt (10 mol %),
DIPEA (10 mol %), THF (1.0 M), 45 °C.
References
Scheme 1. Proposed Catalytic Cycle
(1) Humphrey, J. M.; Chamberlin, A. R. Chem. ReV. 1997, 97, 2243.
(2) Larock, R. C. ComprehensiVe Organic Transformations; VCH: New York,
1999.
(3) For some recent exceptions, see: (a) Shangguan, N.; Katukojvala, S.;
Greenberg, R.; Williams, L. J. J. Am. Chem. Soc. 2003, 125, 7754. (b)
Bode, J. W.; Fox, R. M.; Baucom, K. D. Angew. Chem., Int. Ed. 2006,
45, 1248. (c) Carrillo, N.; Davalos, E. A.; Russak, J. A.; Bode, J. W. J.
Am. Chem. Soc. 2006, 128, 1452.
(4) (a) Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol.
Chem. 2006, 4, 2337. (b) Also see: Dugger, R. W.; Ragan, J. A.; Brown
Ripin, D. H. Org. Process Res. DeV. 2005, 9, 253.
(5) For a sampling of recent contributions in this area, see: (a) Ishihara, K.;
Ohara, S.; Yamamoto, H. J. Org. Chem. 1996, 61, 4196. (b) Eldred, S.
E.; Stone, D. A.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2003,
125, 3422-3423. (c) Yoo, W. J.; Li, C. J. J. Am. Chem. Soc. 2006, 128,
13064. (d) Ekoue-Kovi, K.; Wolf, C. Org. Lett. 2007, 9, 3429.
(6) (a) Reynolds, N. T.; Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc.
2004, 126, 9518. (b) Reynolds, N. T.; Rovis, T. J. Am. Chem. Soc. 2005,
127, 16406.
(7) (a) Chow, K. Y.-K.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 8126. (b)
Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905. (c) Sohn, S. S.; Bode,
J. W. Org. Lett. 2005, 7, 3873. (d) Sohn, S. S.; Bode, J. W. Angew. Chem.,
Int. Ed. 2006, 45, 6021. (e) Zeitler, K. Org. Lett. 2006, 8, 637. (f) Grasa,
G. A.; Gu¨veli, T.; Singh, R.; Nolan, S. P. J. Org. Chem. 2003, 68, 2812.
(8) Reviews: (a) Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534.
(b) Johnson, J. S. Angew. Chem., Int. Ed. 2004, 43, 1326. (c) Zeitler, K.
Angew. Chem., Int. Ed. 2005, 44, 7506. (d) Marion, N.; D´ıez-Gonza´lez,
S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988.
(9) This reactivity was first described by Wallach, who found that treatment
of chloral with aqueous cyanide provides dichloroacetic acid: Wallach,
O. Ann. Chem. 1873, 6, 114.
(10) Movassaghi has shown that amide products can be obtained from treatment
of ester with amino alcohols using N-heterocyclic carbenes. This reactivity
has been shown to proceed via an intramolecular O f N acyl transfer to
generate the amide. Movassaghi, M.; Schmidt, M. A. Org. Lett. 2005, 7,
2453.
Table 2). Importantly, in each case, the only stoichiometric waste
generated is derived from solvent; even the base is used in catalytic
amounts.
The catalytic cycle is postulated to initiate upon formation of
carbene I, which undergoes nucleophilic addition to the aldehyde
(Scheme 1). Generation of the acyl azolium intermediate II sets
the stage for an acyl transfer event with cocatalyst III to furnish
the activated carboxylate IV. Nucleophilic attack by the amine
affords the amide and regenerates the cocatalyst.
Experimental support for the proposed mechanism is provided
by the use of chiral carbenes in this process. The use of catalyst B
leads to an asymmetric R-chloroamide synthesis in modest ee (eq
2), validating the role of the carbene in controlling the protonation
event. In contrast, the use of B provides no selectivity in the kinetic
resolution of R-methylbenzyl amine (eq 3). In addition, the use of
stoichiometric HOAt in the absence of amine provides the HOAt
ester IV in 64% yield. Addition of BnNH2 generates the amide
quantitatively.
In summary, we have developed a waste free amide bond forming
reaction using R-reducible aldehydes and amines catalyzed by
carbenes in conjunction with common peptide additives as cocata-
lysts.
(11) (a) Ko¨nig, W.; Geiger, R. Ber. Dtsch. Chem. Ges. 1970, 103, 788. (b)
Ko¨nig, W.; Geiger, R. Ber. Dtsch. Chem. Ges. 1970, 103, 2024. (c)
Carpino, L. A. J. Am. Chem. Soc. 1993, 115, 4397.
(12) Catalytic HOAt and HOBt in ester amidation: Han, C.; Lee, J. P.;
Lobkovsky, E.; Porco, J. A. J. Am. Chem. Soc. 2005, 127, 10039.
(13) Cascade catalysis: (a) Houri, A. F.; Xu, Z.; Cogan, D. A.; Hoveyda, A.
H. J. Am. Chem. Soc. 1995, 117, 2943. (b) Bruggink, A.; Schoevaart, R.;
Kieboom, T. Org. Process Res. DeV. 2003, 7, 622. (c) Huang, Y.; Walji,
A. M.; Larsen, C. H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005,
127, 15051. (d) Concurrent tandem catalysis: Wasilke, J.-C.; Obrey, S.
J.; Baker, R. T.; Bazan, G. C. Chem. ReV. 2005, 105, 1001.
(14) In the absence of cocatalyst, the reaction generates significant amounts
of imine and R-reduced carboxylic acid.
JA0764052
9
J. AM. CHEM. SOC. VOL. 129, NO. 45, 2007 13797