7980
I. Samb et al. / Tetrahedron Letters 48 (2007) 7978–7981
Table 2. Hydrolysis of compounds 5 and 6
2. Hirschmann, R. Angew. Chem., Int. Ed. Engl. 1991, 30,
Entry
R
4,6-Diola (%)
Aldehydeb (%)
1278–1301.
3. Hirschmann, R.; Nicolaou, K. C.; Pietranico, S.; Salvino,
J.; Leahy, E. M.; Sprengeler, P. A.; Furst, G.; Smith, A.
B., III; Strader, C. D.; Cascieri, M. A.; Candelore, M. R.;
Donaldson, C.; Vale, W.; Maechler, L. J. Am. Chem. Soc.
1992, 114, 9217–9218.
4. Cipolla, L.; Peri, F.; Ferla, B. L.; Redaelli, C.; Nicotra, F.
Curr. Org. Synth. 2005, 2, 153–173, and references cited
therein.
1
2
3
4
5
6
7
Me
Allyl
Bn
CH2COOMe
Me
Bn
7a (76)
7b (75)
7c (72)
7d (70)
8a (78)
8c (73)
8d (79)
9a (78)
9b (66)
9c (68)
9d (70)
10a (63)
10c (63)
10d (71)
CH2COOMe
a Yields refer to pure isolated compounds after chromatography
´
5. Moitessier, N.; Minoux, H.; Maigret, B.; Chretien, F.;
Chapleur, Y. Lett. Pept. Sci. 1998, 5, 75–78.
(method A).
b Yields refer to pure isolated compounds after chromatography
(method B).
´
6. Moitessier, N.; Dufour, S.; Chretien, F.; Thiery, J. P.;
Maigret, B.; Chapleur, Y. Bioorg. Med. Chem. 2001, 9,
511–523.
7. La Ferla, B.; Cardona, F.; Perdiga, I.; Nicotra, F. Synlett
2005, 2641–2642.
8. Cervi, G.; Peri, F.; Battistini, C.; Gennari, C.; Nicotra, F.
Bioorg. Med. Chem. 2006, 14, 3349–3367.
room temperature) gave only diols 7 and 8 in good yield
(Table 2).20
Polyhydroxylated pyrazoles are often considered as
nucleoside acyclic analogues of biological interest.17
Thus, we have developed optimized conditions for the
formation of 9 and 10 in good yield. The replacement
of methanol by THF in acidic hydrolysis allows the for-
mation of only aldehydes 9 and 10 giving an efficient ac-
cess to yet unknown optically active polyhydroxylated
pyrazoles (Table 2) bearing an aldehyde function at
the 4-position of the pyrazole ring.21
9. Chapleur, Y. Chem. Commun. 1983, 3, 141–142.
10. Chapleur, Y.; Euvrard, M. N. Chem. Commun. 1987, 12,
884–885.
11. Mayon, P.; Euvrard, M. N.; Moufid, N.; Chapleur, Y.
Chem. Commun. 1994, 4, 399–401.
12. Genin, M. J.; Biles, C.; Keiser, B. J.; Poppe, S. M.;
Swaney, S. M.; Tarpley, W. G.; Yagi, Y.; Romero, D. L.
J. Med. Chem. 2000, 43, 1034–1040.
13. Price, M. L.; Jorgensen, W. L. J. Am. Chem. Soc. 2000,
122, 9455–9466.
14. Elguero, J.. In Comprehensive Heterocyclic Chemistry;
Katritsky, A. R., Rees, C. W., Scriven, E. F. V., Eds.;
Pergamon Press: Oxford, 1996; Vol. 3, pp 1–75.
15. Kost, A. N.; Grandberg, I. I. Adv. Heterocycl. Chem.
1966, 6, 347–429.
16. (a) Katritzky, A. R.; Wang, M.; Zhang, S.; Voronkov, M.
V.; Steel, P. J. J. Org. Chem. 2001, 66, 6787–6791; (b)
Rosati, O.; Curini, M.; Marcotullio, M. C.; Macchiarulo,
A.; Perfumi, M.; Mattioli, L.; Rismondo, F.; Cravotto, G.
Bioorg. Med. Chem. 2007, 15, 3463–3473; (c) Lee, K. Y.;
Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2005, 46,
5387; (d) Wang, Z.; Qin, H. Green Chem. 2004, 6, 90–
92.
All these data suggest that acetal hydrolysis takes place
first at the anomeric centre then at the benzylic centre.
As soon as the six-membered benzylidene acetal is
cleaved, glycosylation of the free sugar then occurs in
methanol to provide compounds 7 or 8. This unusual
glycoside sensitivity towards acid hydrolysis could be ex-
plained by the strain induced by the tricyclic system and
by the 2-deoxy nature of compounds 5 and 6. In tetrahy-
drofuran, only the most sensitive glycosidic bond is
cleaved giving aldehyde 9 or 10.
In conclusion, we have described a rapid and efficient
synthesis of enantiomerically pure highly functionalized
pyrano-pyrazoles. From the two acetals present on these
scaffolds, both can be selectively cleaved depending on
the acidic hydrolysis conditions. Anomeric acetal hydro-
lysis is obtained in THF and gives access to new chiral
pyrazoles functionalized at position 3 and 4 in good
yields. Benzylidene acetal acidic hydrolysis of these pyr-
azolo-pyranosides occurs only in methanol yielding
bicyclic scaffolds bearing hydroxyl functions at C4-
and C6-position of the sugar ring. Further functionali-
zation of these templates for the design peptidomimetics
is under investigation.
17. (a) Peseke, K.; Feist, H.; Cuny, E. Carbohydr. Res. 1992,
230, 319–325; (b) Kuhla, B.; Peseke, K.; Thiele, G.;
Michalik, M. J. Prakt. Chem. 2000, 342, 240–244; (c)
Methling, K.; Kopf, J.; Michalik, Ma.; Reinke, H.;
Buerger, C.; Oberender, H.; Peseke, K. J. Carbohydr.
Chem. 2003, 22, 537–548; (d) Ruiz, R. M.; Martinez, I. O.;
Michalik, M.; Reinke, H.; Suarez, J. Q.; Peseke, K. J.
Carbohydr. Chem. 2004, 23, 337–351; (e) Otero, I.;
Methling, K.; Feist, H.; Michalik, M.; Quincoces, J.;
Reinke, H.; Peseke, K. J. Carbohydr. Chem. 2005, 24, 809–
829.
18. To a stirred methanolic solution of 3 (0.5 g, 1.56 mmol),
hydrazine hydrate (0.2 mL, 6.24 mmol) was added. The
reaction was monitored by TLC. After reaction comple-
tion, the solvent was evaporated and the solid was
recrystallized from ethanol. Compound 4: White powder,
mp 221 °C, Rf (SiO2, CH2Cl2/MeOH, 95:5) 0.5, [a]D +88.3
Acknowledgements
(c 1.0, CHCl3), IR m 3271 cmꢀ1 1H NMR (250 MHz,
,
CDCl3): dH (ppm) 3.45 (s, 3H, OMe), 3.97 (td, 1H, H5, J5–
We wish to thank B. Fernette and S. Adach for technical
assistance.
0
6 = 9.9 Hz, J4–5 = 8.8 Hz, J5–6 ¼ 4:4 Hz), 4.01 (t, 1H, H6,
0
0
0
J5–6 ¼ J6–6 ¼ 9:9 Hz), 4.41 (dd, 1H, H6 , J5–6 ¼ 4:4 Hz,
0
J6–6 ¼ 9:9 Hz), 4.76 (d, 1H, H4, J4–5 = 8.8 Hz), 5,64 (s,
1H, H1), 5.89 (s, 1H, H benzylidene), 7.4–7.6 (m, 5H,
aromatic), 7.75 (s, 1H, H7), 12.95 (s, 1H, H8); 13C NMR
(DMSO, 63 MHz): d (ppm) 55.7 (OMe), 65.3 (C5), 69.2
(C6), 74.8 (C4), 96.5 (C1), 101.9 (C benzylidene), 115.7
(C2), 127.3, 129.02 (C aromatic), 129.9 (C7), 138.6 (C
References and notes
1. Belanger, P. C.; Dufresne, C. Can. J. Chem. 1986, 64,
1514–1520.