5748
M. S. Kabir et al. / Bioorg. Med. Chem. Lett. 18 (2008) 5745–5749
Table 2
Minimum inhibitory concentration (MIC
l
g/mL) values for natural stilbene 1 and the synthetic analogsa
Compound
S. aureus ATCC 29213
MRSA MC-1
B. cereus
M. smegmatis
E. coli
1
1a
5
6
8
16
>512
>512
>512
16
32
32
16
16
16
16
16
16
>512
>512
>512
>512
>512
>512
>512
32
16
>512
>512
>512
32
32
64
32
32
32
64
64
32
>512
>512
>512
>512
>512
>512
>512
32
16
>512
>512
>512
32
32
32
64
32
64
64
64
16
>512
>512
>512
>512
>512
>512
>512
64
64
>512
>512
>512
128
64
128
>128
64
>128
128
>512
>512
>512
>512
>512
>512
>512
>512
>512
>512
>512
>512
>512
>512
>512
>512
>512
>512
>512
>512
>512
>512
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
26
29
128
128
>512
>512
>512
>512
>512
>512
>512
128
>512
>512
>512
>512
a
MIC values represent the mean of three experiments. ATCC, American Type Culture Collection; MRSA, methicillin-resistant Staphylococcus aureus.
product 1, many were approximately equipotent in the assays. For
example, the phenolic ether 12 was equipotent to 1 in the inhibi-
Linn, and Shamim Ara for their assistance throughout this work.
This study was supported by the Research Growth Initiative of
the University of Wisconsin-Milwaukee (J.M.C.) and a UW-System
Applied Research Grant (A.M.).
tion of the growth of both S. aureus and M. smegmatis (16
and only 2-fold less potent than 1 in the inhibition of the growth
of methicillin-resistant S. aureus (MRSA) and B. cereus (32 g/
lg/mL)
l
mL). Likewise, phenolic thioether 16 had the same MIC value as
References and notes
1 in the inhibition of the growth of both S. aureus and B. cereus
1. Monte, A.; Kabir, S. M.; Cook, J. M.; Rott, M.; Schwan, W. R.; Defoe, L. U.S. Patent
0292,545, 2007.
2. Hooper, S. N.; Chandler, R. F. J. Ethnopharmacol. 1984, 10, 181.
3. Hooper, S. N.; Jurgens, T.; Chandler, R. F.; Stevens, M. F. G. Phytochemistry 1984,
23, 2096.
4. Sylvestre, M.; Pichette, A.; Lavoie, S.; Longtin, A.; Legault, J. Phytother. Res. 2007,
21, 536.
5. Cao, S.; Radwan, M. M.; Norris, A.; Miller, J. S.; Ratovoson, F.; Mamisoa, A.;
Andriantsiferana, R.; Rasamison, V. E.; Rakotonandrasana, S.; Kingston, D. G. I. J.
Nat. Prod. 2006, 69, 284.
6. Ngo, K. S.; Brown, G. D. Phytochemistry 1998, 47, 1117.
7. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial
Susceptibility Tests for Bacteria that Grow Aerobically, 6th ed., Approved standard
M7-A6, Wayne, PA, 2005.
8. Gill, S. R.; Fouts, D. E.; Archer, G. L.; Mongodin, E. F.; De Boy, R. T.; Ravel, J.;
Paulsen, I. T.; Kolonay, J. F.; Brinkac, L.; Beanan, M.; Dodson, R. J.; Daugherty, S.
C.; Madupu, R.; Angiuoli, S. V.; Durkin, A. S.; Haft, D. H.; Vamathevan, J.; Khouri,
H.; Utterback, T.; Lee, C.; Dimitrov, G.; Jiang, L.; Qin, H.; Weidman, J.; Tran, K.;
Kang, K.; Hance, I. R.; Nelson, K. E.; Fraser, C. M. J. Bacteriol. 2005, 187, 2426.
9. Arduino, R. C.; Murray, B. E.; Rakita, R. M. Infect. Immun. 1994, 62, 987.
10. Arduino, R. C.; Jacques-Palaz, K.; Murray, B. E.; Rakita, R. M. Infect. Immun. 1994,
62, 5587.
11. Roberti, M.; Pizzirani, D.; Recanatini, M.; Simoni, D.; Grimaudo, S.; Cristina, A.
D.; Abbadessa, V.; Gebbia, N.; Tolomeo, M. J. Med. Chem. 2006, 49, 3012.
12. Breinbauer, R.; Vetter, I. R.; Waldmann, H. Angew. Chem. Int. Ed. 2002, 41, 2878.
13. Lion, C. J.; Matthews, C. S.; Stevens, M. F. G.; Westwell, A. D. J. Med. Chem. 2005,
48, 1292.
14. Velder, J.; Ritter, S.; Lex, J.; Schmalz, H. G. Synthesis 2006, 2, 273.
15. Botella, L.; Nájera, C. Tetrahedron 2004, 60, 5563.
16. Park, E. J.; Min, H. Y.; Ahn, Y. H.; Bae, C. M.; Pyee, J. H.; Lee, S. K. Bioorg. Med.
Chem. Lett. 2004, 14, 5895.
(16
(32
l
l
g/mL), and was only 2-fold less potent than 1 against MRSA
g/mL) and M. smegmatis (128 g/mL). These initial results
l
are highly encouraging in consideration of the viability of using
phenoxystyrene and phenothiostyrene scaffold structural analogs
of bioactive antimicrobial stilbenes to treat disease because they
are stable at low and high pH values. Indeed, these novel scaffolds
may serve as excellent starting points for further chemical optimi-
zation and the development of new drugs that are certainly needed
to combat threatening MRSA, tuberculosis, and anthrax infections.
Furthermore, because trans-stilbenes have been shown to possess
such a diverse array of biological activity,11–26 these findings
should promote additional SAR studies of stilbenoid compounds
for additional therapeutic areas.
In conclusion, the antibacterial activity of a phenolic (E)-stil-
bene 1 isolated from C. peregrina has been evaluated and demon-
strated to be active against a range of Gram-positive bacteria,
including drug resistant S. aureus and enterococci spp., but not
Gram-negative bacteria. Importantly, 1 was active against M. bovis
(BCG) and against B. anthracis, as well as three related Bacillus spe-
cies. When the phenolic stilbene scaffold was modified with other
aryl moieties or extended by one heteroatom to create the novel
phenoxystyrene and phenothiostyrene derivatives, these agents
also demonstrated promising antimicrobial activity, given that at
least one phenolic moiety was present, as in compounds 8–16
and 26. Consequently, further exploration of these novel scaffolds
is warranted from both synthetic and microbiological perspectives.
Additional SAR studies of these novel homologous stilbenoid com-
pounds and more extensive microbiological characterization of the
active agents are currently underway.
17. Heynekamp, J. J.; Weber, W. M.; Hunsaker, L. A.; Gonzales, A. M.; Orlando, R. A.
J. Med. Chem. 2006, 49, 7182.
18. Chen, G.; Shan, W.; Wu, Y.; Ren, L.; Dong, J.; Ji, Z. Chem. Pharm. Bull. 2005, 53,
1587.
19. Sundar, L.; Chang, F. N. Antimicrob. Agents Chemother. 1992, 36, 2645.
20. Li, J.; Chen, G.; Wu, H.; Webster, J. M. Appl. Environ. Microbiol. 1995, 61, 4329.
21. Richardson, W. H.; Schmidt, T. M.; Nealson, K. H. Appl. Environ. Microbiol. 1988,
54, 1602.
22. Forst, S.; Nealson, K. Microbiol. Rev. 1996, 60, 21.
23. Subramanian, M.; Shadakshari, U.; Chattopadhyay, S. Bioorg. Med. Chem. 2004,
12, 1231.
Acknowledgments
24. Li, Y. Q.; Li, Z. L.; Zhao, W. J.; Wen, R. X.; Meng, Q. W.; Zeng, Y. Eur. J. Med. Chem.
2006, 41, 1084.
We wish to thank Matthew E. Dudley for his technical help. We
also thank Rahul V. Edwankar, Chitra Edwankar, Michael L. Van