Journal of the American Chemical Society
Article
Chem. 2015, 11, 2418−2434. (g) Fraser, P. K.; Woodward, S. Chem. -
Eur. J. 2003, 9, 776−783.
(18) Jacobs, R. T.; Bernstein, P. R.; Cronk, L. A.; Vacek, E. P.;
Newcomb, L. F.; Aharony, D.; Buckner, C. K.; Kusner, E. J. J. Med.
Chem. 1994, 37, 1282−1297. (b) Jacobs, R. T.; Yee, Y. K.; Bernstein,
P. R.; Brewster, A. G.; Sependa, G. J. (2R)-Methyl-4,4,4- trifluorobutyl-
amine. EP 489548A1, June 10, 1992.
(3) (a) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide
Linkage: Structural Significance in Chemistry, Biochemistry and Materials
Science; Wiley: New York, 2000. (b) Ruider, S. A.; Maulide, N. Angew.
Chem., Int. Ed. 2015, 54, 13856−13858. (c) Bray, B. L. Nat. Rev. Drug
Discovery 2003, 2, 587−593. (d) Pattabiraman, V. R.; Bode, J. W.
Nature 2011, 480, 471−479. (e) Valeur, E.; Bradley, M. Chem. Soc.
Rev. 2009, 38, 606−631.
(19) For the deprotection: Nagaki, A.; Takahashi, Y.; Yoshida, J.-I.
Angew. Chem., Int. Ed. 2016, 55, 5327−5331.
(20) Miyamoto, K.; Sakai, Y.; Goda, S.; Ochiai, M. Chem. Commun.
2012, 48, 982−984.
(21) (a) Yoshikai, N.; Nakamura, E. Chem. Rev. 2012, 112, 2339−
(4) Byrd, K. M. Beilstein J. Org. Chem. 2015, 11, 530−562.
(5) For examples using rhodium-catalyzed asymmetric addition:
(a) Yasukawa, T.; Saito, Y.; Miyamura, H.; Kobayashi, S. Angew. Chem.,
Int. Ed. 2016, 55, 8058−8061. (b) Sakuma, S.; Miyaura, N. J. Org.
Chem. 2001, 66, 8944−8946. (c) Shintani, R.; Kimura, T.; Hayashi, T.
Chem. Commun. 2005, 3213−3214. (d) Oi, S.; Taira, A.; Honma, Y.;
Sato, T.; Inoue, Y. Tetrahedron: Asymmetry 2006, 17, 598−602.
(e) Pucheault, M.; Michaut, V.; Darses, S.; Genet, J.-P. Tetrahedron
Lett. 2004, 45, 4729−4732. (f) Defieber, C.; Paquin, J.-F.; Serna, S.;
Carreira, E. M. Org. Lett. 2004, 6, 3873−3876. (g) Shintani, R.;
Kimura, T.; Hayashi, T. Chem. Commun. 2005, 3213−3214.
(6) For examples using copper-catalyzed ACA: (a) Hird, A. W.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 1276−1279.
(b) Pineschi, M.; Del Moro, F.; Di Bussolo, V.; Macchia, F. Adv.
Synth. Catal. 2006, 348, 301−304.
2372. (b) Harutyunyan, S. R.; Lop
́
ez, F.; Browne, W. R.; Correa, A.;
Pena, D.; Badorrey, R.; Meetsma, A.; Minnaard, A. J.; Feringa, B. L. J.
̃
Am. Chem. Soc. 2006, 128, 9103−9118.
(22) For comprehensive list of references on use of Lewis acids in
copper-catalyzed conjugate additions see ref 21a.
(23) (a) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1985, 26, 6019−
6022. (b) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1985, 26, 6015−
6018. (c) Alexakis, A.; Berlan, J.; Besace, Y. Tetrahedron Lett. 1986, 27,
1047−1050. (d) Matsuzawa, S.; Horiguchi, Y.; Nakamura, E.;
Kuwajima, I. Tetrahedron 1989, 45, 349−362. (e) Bertz, S. H.; Miao,
G.; Rossiter, B. E.; Snyder, J. P. J. Am. Chem. Soc. 1995, 117, 11023−
11024. (f) Frantz, D. E.; Singleton, D. A. J. Am. Chem. Soc. 2000, 122,
3288−3295.
(24) (a) Yamamoto, Y.; Yamamoto, S.; Yatagai, H.; Ishihara, Y.;
Maruyama, K. J. Org. Chem. 1982, 47, 119−126. (b) Nakamura, E.;
Yamanaka, M.; Mori, S. J. Am. Chem. Soc. 2000, 122, 1826−1827.
(c) Lipshutz, B. H.; Ellsworth, E. L.; Dimock, S. H. J. Am. Chem. Soc.
1990, 112, 5869−5871.
(7) For copper-catalyzed ACA to lactams: (a) Pineschi, M.; Del
Moro, F.; Gini, F.; Minnaard, A. J.; Feringa, B. L. Chem. Commun.
2004, 1244−1245. (b) Cottet, P.; Muller, D.; Alexakis, A. Org. Lett.
̈
2013, 15, 828−831. (c) Pace, V.; Rae, J. P.; Procter, D. J. Org. Lett.
2014, 16, 476−479.
́
́ ́ ́
(8) Schoonen, A. K.; Fernandez-Ibanez, M. A.; Fananas-Mastral, M.;
̃ ̃
Teichert, J. F.; Feringa, B. Org. Biomol. Chem. 2014, 12, 36−41.
(9) Biswas, K.; Woodward, S. Tetrahedron: Asymmetry 2008, 19,
1702−1708.
(10) (a) Yamamoto, H. Lewis Acids in Organic Synthesis; Wiley-VCH:
Weinheim, 2000; Vol. 1−2. (b) Yamamoto, Y.; Yamamoto, S.; Yatagai,
H.; Ishihara, Y.; Maruyama, K. J. Org. Chem. 1982, 47, 119−126.
(c) Pace, V.; Holzer, W.; Olofsson, B. Adv. Synth. Catal. 2014, 356,
3697−3736.
(11) Jumde, R. P.; Lanza, F.; Veenstra, M. J.; Harutyunyan, S. R.
Science 2016, 352, 433−437.
(12) CH2Cl2 was found to be the optimal solvent. The presence of
even traces of THF is detrimental for the reaction conversion and
enantioselectivity (see SI). On the other hand, copper salts other than
CuBr can be used as well, as long as the halide in the Grignard reagent
is a bromide (RMgBr).
(13) Grignard reagents must be used either in Et2O or tBuOMe.
THF must be avoided, even in a small quantities. For example, Cu(I)-
catalyzed conjugate addition of iPrMgBr in THF led to racemic
product, while in Et2O the same reaction afforded the product with
67% ee.
(14) Racemic product being obtained with PhMgBr is due to slower
reductive elimination of Cu from Ar-Cu species as compared to Alk-
Cu, resulting in a slower copper-catalyzed reaction, which con-
sequently is outcompeted by the direct, noncatalytic addition of
PhMgBr. The low conversion obtained with PhMgBr is the direct
consequence of its high reactivity, since this causes the reaction with
the LA to be faster than the desired CA.
́
(15) (a) Des Mazery, R.; Pullez, M.; Lopez, F.; Harutyunyan, S. R.;
Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2005, 127, 9966−
9967. (b) Wang, S.-Y.; Ji, S.-J.; Loh, T.-P. J. Am. Chem. Soc. 2007, 129,
276−277.
(16) (a) Omura, S. Macrolide Antibiotics; Academic Press: Orlando,
FL, 1984. (b) Lazarevski, G.; Kobrehel, G.; Metelko, B.; Duddeck, H.
J. Antibiot. 1996, 49, 1066−1069. (c) Nicholas, G. M.; Molinski, T. F.
Tetrahedron 2000, 56, 2921−2927.
(17) (a) Fusetani, N.; Sugawara, T.; Matsunaga, S.; Hirota, H. J. Am.
Chem. Soc. 1991, 113, 7811−7812. (b) Murakami, Y.; Takei, M.;
Shindo, K.; Kitazume, C.; Tanaka, J.; Higa, T.; Fukamachi, H. J. Nat.
Prod. 2002, 65, 259−261.
H
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX