52
H.-H. Liu et al. / Journal of Molecular Catalysis A: Chemical 246 (2006) 49–52
Because of the simpler procedure of preparation, 3-Ru was
selected for other substrates.
(c) K.C. Brown, T. Kodadek, J. Am. Chem. Soc. 114 (1992) 8336;
(d) S. O’Malley, T. Kodadek, Organometallics 11 (1992) 2299.
[6] (a) D.A. Smith, D.N. Reynolds, L.K. Woo, J. Am. Chem. Soc. 115
(1993) 2511;
3.3. Catalytic cyclopropanation of other substrates
(b) J.-P. Djukic, V.G. Young Jr., L.K. Woo, Organometallics 13 (1994)
3995;
Catalytic cyclopropanation of other substrates was investi-
gated under the optimized reaction conditions by using 3-Ru as
catalyst. The predominant products detected were exclusively
the respective cyclopropanes as depicted in Table 3. Differently
from the reported ruthenium poprhyrin complex, which ben-
efited to the electron rich styrene with 98% yield while only
65% for 4-Cl-styrene, 3-Ru catalyzed styrenes without obvious
changes in yields changing from 81 to 91%. And the highest
yield of 91% was obtained for styrene.
(c) C.G. Hamaker, J.P. Djukic, D.A. Smith, L.K. Woo, Organometallics
20 (2001) 5189;
(d) Y. Li, J.-S. Huang, Z.-Y. Zhou, C.-M. Che, J. Am. Chem. Soc. 123
(2001) 4843;
(e) G. Du, B. Andrioletti, E. Rose, L.K. Woo, Organometallics 21 (2002)
4490.
[7] (a) J.R. Wolf, C.G. Hamaker, J.P. Djukic, T. Kodadek, L.K. Woo, J. Am.
Chem. Soc. 117 (1995) 9194;
(b) V.K. Aggarwal, J. de Vicente, R.V. Bonnert, Org. Lett. 3 (2001)
2785;
(c) C.G. Hamaker, G.A. Mirafzal, L.K. Woo, Organometallics 20 (2001)
5171;
(d) Y. Li, J.-S. Huang, Z.-Y. Zhou, C.M. Che, X.-Z. You, J. Am. Chem.
Soc. 124 (2002) 13185.
Intramolecular cyclopropanation has also been examined by
using allylic diazoacetates in moderate yields (entries 8 and 9).
[8] (a) W.C. Lo, C.M. Che, K.F. Cheng, T.C.W. Mak, Chem. Commun.
(1997) 1205;
4. Conclusion
(b) C.M. Che, J.-S. Huang, F.-W. Lee, Y. Li, T.-S. Lai, H.-L. Kwong,
P.-F. Teng, W.-S. Lee, W.-C. Lo, S.-M. Peng, Z.-Y. Zhou, J. Am. Chem.
Soc. 123 (2001) 4119;
(c) P.-F. Teng, T.-S. Lai, H.-L. Kwong, C.M. Che, Tetrahedron: Asym-
metry 149 (2003) 837.
Metallophthalocyanines were found to be efficient catalysts
for the cyclopropanation of a variety of alkenes. Substituted
especially electron-withdrawing substituted phthalocya-
nine complexes exhibited excellent catalytic abilities. The
highest yield of 91% for styrene was obtained by using
fluoro-substituted ruthenium–phthalocyanine complex.
[9] (a) E. Galardon, P. LeMaux, G. Simonneaux, Chem. Commun. (1997)
927;
(b) E. Galardon, S. Roue, P. Le Maux, G. Simonneaux, Tetrahedron
Lett. 39 (1998) 2333;
(c) C. Paul-Roth, F.D. Montigny, G. Rethore, G. Simonneaux, M. Gulea,
S. Masson, J. Mol. Catal. A: Chem. 201 (2003) 79.
[10] M. Frauenkron, A. Berkessel, Tetrahedron Lett. 38 (1997) 7175.
[11] Z. Gross, N. Galili, L. Simkhovich, Tetrahedron Lett. 40 (1999)
1571.
[12] (a) B. Meunier, A. Sorokin, Acc. Chem. Res. 30 (1997) 470;
(b) A. Sorokin, S. De SuzzonI-Dezard, D. Poull-ain, J.P. Noel, B. Meu-
nier, J. Am. Chem. Soc. 118 (1996) 7418;
Acknowledgements
We thank Sichuan University and State Key Laboratory of
Coordination Chemistry of Nanjing University for financial
support.
References
(c) A. Sorokin, B. Meunier, J. Chem. Soc. Chem. Commun. (1994)
1799;
[1] (a) W.A. Donaldson, Tetrahedron 57 (2001) 8589;
(b) M.P. Doyle, D.C. Forbes, Chem. Rev. 98 (1998) 911;
(c) T. Ye, M.A. McKervey, Chem. Rev. 94 (1994) 1091.
[2] (a) H. Lebel, J.-F. Marcoux, C. Molinaro, A.B. Charette, Chem. Rev.
103 (2003) 977, and references therein;
(b) Y. Zhang, W. Sun, A.M. Santos, E. Fritz, Kuehn 101 (2005) 35.
[3] (a) G. Simonneaux, P. Le Maux, Coord. Chem. Rev. 228 (2002) 43;
(b) C.M. Che, J.S. Huang, Coord. Chem. Rev. 231 (2002) 151;
(c) I. Artaud, N. Gregoire, P. Leduc, D. Mansuy, J. Am. Chem. Soc.
112 (1990) 6899;
(d) A. Sorokin, J.L. Seris, B. Meunier, Science 268 (1995) 1163;
(e) N. Grootboom, T. Nyo-kong, J. Mol. Catal. 179 (2002) 113.
[13] K. Soo-Jong, M. Michiko, S. Kiyotaka, Synth. Met. 107 (1999) 27.
[14] S. Murahashi, X. Zhou, N. Komiya, Synlett (2003) 321.
[15] (a) J.G. Young, O. William, J. Org. Chem. 55 (1990) 2155;
(b) N.E. Searle, Org. Synth. 4 (1963) 424.
[16] C. Franco, Dyes Pigments 34 (1997) 75.
[17] R. Decre’au, M. Chanon, M. Julliard, Inorg. Chim. Acta 293 (1999)
80.
[18] W. Ulrich, M. Thomas, J. Wolfram, K. Christian, S. Derck, M. Sergey,
W. Dieter, J. Phys. Chem. B 108 (2004) 193.
(d) J.T. Groves, G.E. Avarianeisser, K.M. Fish, M. Imachi, R.L.
Kuczkowski, J. Am. Chem. Soc. 108 (1986) 3837;
(e) D. Mansuy, Pure Appl. Chem. 52 (1980) 681.
[19] W. Shaohua, Dyes Pigments 56 (2003) 1.
[20] About the solubility of complexes used in this paper, substituents
improved the solubility of the corresponding complexes: complexes with
ligands 1–2 ligands have low solubility in normal organic solvents while
complexes with ligands 3–5 are soluble.
[4] (a) H.J. Callot, C. Piechocki, Tetrahedron Lett. 21 (1980) 3489;
(b) H.J. Callot, F. Metz, C. Piechocki, Tetrahedron 38 (1982) 2365.
[5] (a) D.W. Bartley, T. Kodadek, J. Am. Chem. Soc. 115 (1993) 1656;
(b) J.L. Maxwell, K.C. Brown, D.W. Bartley, T. Kodadek, Science 256
(1992) 1544;
[21] V.B. Sharma, S.L. Jain, B. Sain, Catal. Lett. 94 (2004) 57.