10.1002/chem.202000160
Chemistry - A European Journal
COMMUNICATION
TOF of 363 h-1. The cell potential was only 1.87 V, corresponding
to an EE of 71%. EDX elemental mapping of the GDE after the 24
[7]
[8]
[9]
N. D. Loewen, T. V. Neelakantan, L. A. Berben, Acc. Chem. Res. 2017,
50, 2362-2370.
C. Costentin, M. Robert, J-M. Savéant, A. Tatin, Proc. Natl. Acad. Sci.
USA 2015, 112, 6882-6886.
h
electrolysis showed that FeP was still present and
homogeneously dispersed in the film (Figure S18). XANES of the
GDE and UV-vis of catalyst extracted from the GDE after
electrolysis further proved the molecular integrity of FeP intact
(Figures S19A and S19B). Finally, at 50 mA cm-2 current density,
a remarkably low overpotential of 120 mV was maintained during
a 3 h electrolysis, producing 0.9 mmol h-1 CO with 99.8 ± 0.2%
selectivity, a TON of 2023 and a TOF of 674 h-1, along with an EE
of 57% (Figure S20).
I. Azcarate, C. Costentin, M. Robert, J.-M. Savéant, J. Am. Chem. Soc.
2016, 138, 16639-16644.
[10] N. D. Loewen, T. V. Neelakantan, L. A. Berben, Acc. Chem. Res. 2017,
50, 2362-2370.
[11] E. A. Mohamed, Z. N. Zahran, Y. Naruta, Chem. Mat. 2017, 29, 7140-
7150.
[12] S. Aoi, K. Mase, K. Ohkubo, S. Fukuzumi, Chem. Commun. 2015, 50,
10226-10228.
[13] A. Maurin, M. Robert, J. Am. Chem. Soc. 2016, 138, 2492-2495.
[14] X-M. Hu, M. H. Ronne, S. U. Pedersen, T. Skrydstrup, K. Daasbjerg,
Angew. Chem. Int. Ed. 2017, 56, 6468-6472.
In conclusion, FeP appears as an exceptionally efficient
supported homogeneous catalyst for the conversion of CO2 to CO
in water once inserted in a flow cell. From neutral pH to alkaline
conditions, selectivities larger than 98% were systematically
obtained, thanks to the high reactivity of the catalyst with CO2 and
the low overpotential values that makes the HER pathway
unfavorable. The catalytic material proved to be stable under
operating conditions over prolonged electrolysis time. Slight
increase in temperature (from 25 to 40 °C) as well as increasing
the electrolyte concentration and the cation size were beneficial
to both the CO production rate, the selectivity of the CO2-to-CO
conversion and the energy efficiency. Remarkably, a very high
current density for CO could be obtained at a low overpotential
(jCO > 150 mA cm-2 at η = 470 mV), outperforming state of the art
silver based nanomaterials. These results illustrate that molecular
catalysts can be used in flow cell devices and are candidates for
being included into large scale CO2 electrolyzers.
[15] X. Zhang, Z. Wu, X Zhang et al., Nat. Commun. 2017, 8:14675.
[16] N. Han, Y. Wang, L. Ma et al., Chem 2017, 3, 652-664.
[17] M. Wang, L. Chen, T-C. Lau, M. Robert, Angew. Chem. Int. Ed. 2018, 57,
7769-7773.
[18] J. Choi, P. Wagner, S. Gambir, R. Jalili, D. R. MacFarlane, G. G. Wallace,
D. L. Officer, ACS Energy Lett. 2019, 4, 666-672.
[19] M. Zhu, J. Chen, L. Huang, R. Ye, J. Xu, Y-F. Han, Angew. Chem. Int.
Ed. 2019, 58, 6595-6599.
[20] L. Rotundo, J. Filippi, R. Rocca, R. Gobetto, H. A. Miller, C. Nervi, F.
Vizza, Chem. Commun. 2019, 55, 775-777.
[21] M. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulie, F. Dumoulin, D.
Mendoza, B. Lassalle-Kaiser, U. Işci, C. Berlinguette, M. Robert, Nat.
Commun. 2019, 10:3602.
[22] S. Ren, D. Joulie, D. Salvatore, K. Torbensen, M. Wang, M. Robert, C.
Berlinguette, Science 2019, 365, 367-369.
[23] R. B. Kutz, Q. Chen, H. Yang, S. D. Sajjad, Z. Liu, I. R. Masel, Energy
Technol. 2017, 5, 929-936.
[24] C-T., Dinh, F. P., García de Arquer, D. Sinton, D., E. H. Sargent, ACS
Energy Lett. 2018, 3, 2835−2840.
[25] S. Verma, Y. Hamasaki, C. Kim, W. Huang, S. Lu, S., H-R. M., Jhong, A.
A. Gewirth, T. Fujigaya, N. Nakashima, P. J. A. Kenis, ACS Energy Lett.
2018, 3, 193−198.
Acknowledgements
[26] C. Costentin, M. Robert, J-M. Savéant, A. Tatin, Proc. Natl. Acad. Sci.
USA 2015, 112, 6882-6886.
The work described in this project was financed in part by Air
Liquide and the Institut Universitaire de France (IUF). PhD
fellowship to C. H from China Scholarship Council (CSC, grant
number 201603170259) is gratefully acknowledged. We thank Ms.
D. Mendoza and Dr. B. Lassalle-Kaiser for collecting Xray
absorption data at SOLEIL synchrotron facilities.
[27] A. Tatin, C. Cominges, B. Kokoh, C. Costentin, M. Robert, J-M. Savéant,
Proc. Natl. Acad. Sci. USA 2016, 113, 5526-5529.
[28] J. Choi, P. Wagner, S. Gambir, R. Jalili, J. Kim, D. R. MacFarlane, G. G.
Wallace, D. L. Officer, Adv. Energy Mater. 2018, 1801280.
[29] J. Choi, J. Kim, P. Wagner, S. Gambir, R. Jalili, S. Byun, S. Sayyar, Y.
M. Lee, D. R. MacFarlane, G. G. Wallace, D. L. Officer, Energy Environ.
Sci. 2019, 12, 747-755.
Keywords: • carbon dioxide reduction • carbon monoxide • Fe
complex • flow cell • hybrid materials •
[30] P. T. Smith, B. P. Benke, Z. Cao, Y. Kim, E. M. Nichols, K. Kim, C. J.
Chang, Angew. Chem. Int. Ed. 2018, 57, 9684-9688.
[31] B-X. Dong, S-L. Qian, F-Y. Bu, Y-C. Wu, L-G. Feng, Y-L. Teng, W-L. Liu,
Z-W Li, ACS Appl. Energy Mater. 2018, 1, 4662-4669.
[32] A. Löwe, C. Rieg, T. Hierlemann, N. Salas, D. Kopjlar, N. Wagner, E.
Klemm, ChemElectroChem 2019, 6, 4497-4506.
[1]
[2]
A. Tatin, J. Bonin, M. Robert, ACS Energy Lett. 2016, 1, 1062-1064.
P. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo, E. H.
Sargent, Science 2019, 364, eaav3506.
[33] M. M. de Salles Pupo, R. Kortlever, ChemPhysChem,
doi.org/10.1002/cphc.201900680.
[3]
88.
[4]
[5]
[6]
H. Takeda, C. Cometto, O. Ishitani, M. Robert, ACS Catal. 2017, 7, 70-
[34] S. Ringe, E. L. Clark, J. Resasco, A. Walton, B. Seger, A. T. Bell, K. Chan,
Energy Environ. Sci. 2019,12, 3001-3014.
K. A. Grice, Coord. Chem. Rev. 2017, 336, 78-95.
R. Francke, B. Schille, M. Roemelt, Chem. Rev. 2018, 118, 4631-4701.
K. E. Dalle, J. Warnan, J. J. Leung, B. Reuillard, I. S. Karmel, E. Reisner,
Chem. Rev. 2019, 119, 2752-2875.
This article is protected by copyright. All rights reserved.