Journal of the American Chemical Society
Article
(9) Yu, S.; Ma, S. Chem. Commun. 2011, 47, 5384.
(10) Ogasawara, M. Tetrahedron: Asymmetry 2009, 20, 259.
(11) Neff, R. K.; Frantz, D. E. ACS Catal. 2014, 4, 519.
(12) Ye, J.; Ma, S. Org. Chem. Front. 2014, 1, 1210.
(13) Henderson, M. A.; Heathcock, C. H. J. Org. Chem. 1988, 53,
4736.
(14) Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978.
(15) Marshall, J. A.; Robinson, E. D.; Zapata, A. J. Org. Chem. 1989,
54, 5854.
(16) Alexakis, A.; Marek, I.; Mangeney, P.; Normant, J. F. J. Am.
Chem. Soc. 1990, 112, 8042.
(17) Gooding, O. W.; Beard, C. C.; Jackson, D. Y.; Wren, D. L.;
Cooper, G. F. J. Org. Chem. 1991, 56, 1083.
(18) Marshall, J. A.; Pinney, K. G. J. Org. Chem. 1993, 58, 7180.
(19) Pu, X.; Ready, J. M. J. Am. Chem. Soc. 2008, 130, 10874.
(20) Tang, X.; Woodward, S.; Krause, N. Eur. J. Org. Chem. 2009,
2009, 2836.
(21) Uehling, M. R.; Marionni, S. T.; Lalic, G. Org. Lett. 2012, 14,
362.
(22) Wu, S.; Huang, X.; Wu, W.; Li, P.; Fu, C.; Ma, S. Nat. Commun.
2015, 6, 7946.
(23) Myers, A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492.
efficient asymmetric synthesis of chiral allenes from achiral
precursors. Both reaction manifolds utilize boron nucleophiles
that add to sulfonyl hydrazones to generate chiral propargylic
hydrazides, which decompose to form unstable diazene
intermediates. Retro-ene fragmentation of the enantioenriched
diazene intermediates results in a stereospecific point-to-axial
transfer of chirality, generating the allene products with
concomitant loss of dinitrogen. The catalytic and enantiose-
lective generation of transient chiral diazene intermediates
represents a unique and somewhat nonobvious approach to
asymmetric synthesis that is currently underdeveloped. Sorensen
and co-workers have reported the asymmetric Diels−Alder
reaction and subsequent retro-ene decomposition of 1-hydra-
zinodienes,51 while the Movassaghi lab developed an enantio-
selective route to allylic diazenes through a palladium-catalyzed
asymmetric alkylation of sulfonyl hydrazones.52 Together with
our work, these reactions represent rare examples of catalyti-
cally generated enantioenriched diazene intermediates. Further
exploration of these species within the context of asymmetric
catalysis is likely to reveal a range of similarly useful chemical
transformations of broad utility for synthesis.
(24) Lu, R.; Ye, J.; Cao, T.; Chen, B.; Fan, W.; Lin, W.; Liu, J.; Luo,
̈
H.; Miao, B.; Ni, S.; Tang, X.; Wang, N.; Wang, Y.; Xie, X.; Yu, Q.;
Yuan, W.; Zhang, W.; Zhu, C.; Ma, S. Org. Lett. 2013, 15, 2254.
(25) Deska, J.; Backvall, J.-E. Org. Biomol. Chem. 2009, 7, 3379.
(26) Ogasawara, M.; Ikeda, H.; Nagano, T.; Hayashi, T. J. Am. Chem.
Soc. 2001, 123, 2089.
(27) Nishimura, T.; Makino, H.; Nagaosa, M.; Hayashi, T. J. Am.
Chem. Soc. 2010, 132, 12865.
(28) Wang, M.; Liu, Z.-L.; Zhang, X.; Tian, P.-P.; Xu, Y.-H.; Loh, T.-
P. J. Am. Chem. Soc. 2015, 137, 14830.
(29) Crouch, I. T.; Neff, R. K.; Frantz, D. E. J. Am. Chem. Soc. 2013,
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
All experimental procedures, complete characterization
(NMR, MS, IR, and optical rotation) of all new com-
pounds, and HPLC assays for determination of enan-
135, 4970.
AUTHOR INFORMATION
(30) Ye, J.; Li, S.; Chen, B.; Fan, W.; Kuang, J.; Liu, J.; Liu, Y.; Miao,
B.; Wan, B.; Wang, Y.; Xie, X.; Yu, Q.; Yuan, W.; Ma, S. Org. Lett.
2012, 14, 1346.
(31) Chu, W.-D.; Zhang, L.; Zhang, Z.; Zhou, Q.; Mo, F.; Zhang, Y.;
Wang, J. J. Am. Chem. Soc. 2016, 138, 14558.
(32) Trost, B. M.; Fandrick, D. R.; Dinh, D. C. J. Am. Chem. Soc.
2005, 127, 14186.
(33) Qian, H.; Yu, X.; Zhang, J.; Sun, J. J. Am. Chem. Soc. 2013, 135,
18020.
(34) Liu, H.; Leow, D.; Huang, K.-W.; Tan, C.-H. J. Am. Chem. Soc.
2009, 131, 7212.
■
Corresponding Authors
ORCID
Notes
The authors declare no competing financial interest.
(35) Hashimoto, T.; Sakata, K.; Tamakuni, F.; Dutton, M. J.;
Maruoka, K. Nat. Chem. 2013, 5, 240.
(36) Tap, A.; Blond, A.; Wakchaure, V. N.; List, B. Angew. Chem., Int.
Ed. 2016, 55, 8962.
(37) Mundal, D. A.; Lutz, K. E.; Thomson, R. J. J. Am. Chem. Soc.
ACKNOWLEDGMENTS
■
S.E.S. and Y.J. gratefully acknowledge the NIH for research sup-
port (R01 GM078240) and instrumentation (P50 GM067041).
R.J.T. and A.B.D. gratefully acknowledge the NSF for research
support (CHE1361173) and the ARCS Foundation for the
Daniel D. and Ada L. Rice Foundation Scholarship to A.B.D.
2012, 134, 5782.
(38) Diagne, A. B.; Li, S.; Perkowski, G. A.; Mrksich, M.; Thomson,
R. J. ACS Comb. Sci. 2015, 17, 658.
(39) Lou, S.; Schaus, S. E. J. Am. Chem. Soc. 2008, 130, 6922.
(40) Bishop, J. A.; Lou, S.; Schaus, S. E. Angew. Chem., Int. Ed. 2009,
48, 4337.
(41) Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2007,
129, 15398.
(42) Muncipinto, G.; Moquist, P. N.; Schreiber, S. L.; Schaus, S. E.
Angew. Chem., Int. Ed. 2011, 50, 8172.
(43) Candeias, N. R.; Montalbano, F.; Cal, P. M. S. D.; Gois, P. M. P.
Chem. Rev. 2010, 110, 6169.
(44) Jiang, Y.; Schaus, S. E. Angew. Chem., Int. Ed. 2017,
REFERENCES
■
(1) van’t Hoff, J. H. La Chimie dans L’Espace; Bazendijk: Rotterdam,
1875.
(2) Burton, B. S.; von Pechmann, H. Ber. Dtsch. Chem. Ges. 1887, 20,
145.
(3) Jones, E. R. H.; Shaw, B. L.; Whiting, M. C. J. Chem. Soc. 1954,
3212.
(4) Crombie, L.; Harper, S. H.; Thompson, D. J. Chem. Soc. 1951,
2906.
(5) Hoffmann-Roder, A.; Krause, N. Angew. Chem., Int. Ed. 2004, 43,
1196.
(45) Hoffmann-Roder, A.; Krause, N. Org. Lett. 2001, 3, 2537.
̈
(6) Rivera-Fuentes, P.; Diederich, F. Angew. Chem., Int. Ed. 2012, 51,
2818.
(7) Ma, S. Chem. Rev. 2005, 105, 2829.
(8) Allen, A. D.; Tidwell, T. T. Chem. Rev. 2013, 113, 7287.
(46) Ye, J.; Fan, W.; Ma, S. Chem. - Eur. J. 2013, 19, 716.
(47) Bagby, M. O.; Smith, C. R.; Wolff, I. A. J. Org. Chem. 1965, 30,
4227.
G
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX