10.1002/cssc.202001449
ChemSusChem
FULL PAPER
Commun., 2015, 51, 9459; c) C. Prandi, S. Ghinato, G. Dilauro, F. M.
Yokoo, T. Kawai, Eur. J. Inorg. Chem., 2009, 4777; d) H. D. Amberger,
L. Zhang, H. Reddmann, C. Apostolidis, O. Z. Walter, Z. Anorg. Allg.
Chem., 2006, 632, 2467; e) L. D. Henderson, G. D. MacInnis, W. E.
Piers, M. Parvez, Can. J. Chem., 2004, 82, 162; f) J. C. Berthet, M.
Nierlich, M. Ephritikhine, Polyhedron, 2003, 22, 3475; g) N. J. Hill, W.
Levason, M. C. Popham, G. Reid, M. Webster, Polyhedron, 2002, 21,
445; h) N. Burford, Coord. Chem. Rev., 1992, 112, 1; i) A. Bader, E.
Lindner, Coord. Chem. Rev., 1991, 108, 27; j) C.-M. Che, T.-F. Lai, W.-
C. Chung, W. P. Schaefer, H. B. Gray, Inorg. Chem., 1987, 26, 3907; k)
R. J. Coyle, Y. L. Slovokhotov, M. Y. Antipin, V. V. Grushin, Polyhedron,
1998, 17, 3059; l) J. S. L. Yeo, J. J. Vittal, T. S. A. Hor, Chem.
Commun., 1999, 1477; m) D. C. Billington, I. M. Helps, P. L. Pauson, W.
Thomson, D. Willison, J. Organomet. Chem., 1988, 354, 233; n) W. J.
Evans, J.W. Grate, R. J. Doedens, J. Am. Chem. Soc., 1985, 107, 1671.
[22] a) S. Kotani, M. Nakajima, Tetrahedron Lett., 2020, 61, 151421; b) T.
Ayad, A. Gernet, J.-L. Pirat, D. Virieux, Tetrahedron, 2019, 75, 4385; c)
M. Banaglia, S. Rossi, Org. Biomol. Chem., 2010, 8, 3824.
Perna, V. Capriati, M. Blangetti, Chem. Commun., 2019, 55, 7741.
a) A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V.
Tambyrajah, Chem. Commun., 2003, 70; b) Deep Eutectic Solvents:
Synthesis, Properties, and Applications, (Eds.: D. J. Ramón and G.
Guillena), Wiley-VCH: Weinheim, Germany, 2019; c) F. M. Perna, P.
Vitale, V. Capriati, Curr. Opin. Green Sustain. Chem., 2020, 21, 27.
[9]
[10] a) J. Bariwal, E. V. Van der Eycken, Chem. Soc. Rev., 2013, 42, 9283;
b) P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev., 2016, 116, 12564; c) A.
F. Quivelli, P. Vitale, F. M. Perna, V. Capriati, Front. Chem., 2019, 7,
723.
[11] a) Q. Shelby, N. Kataoka, G. Mann, J. F. Hartwig, J. Am. Chem. Soc.,
2000, 122, 10718; b) E. Torraca, X. Huang, C. A. Parrish, S. L.
Buchwald, J. Am. Chem. Soc., 2001, 123, 10770; c) S. Kuwabe, K. E.
Torraca, S. L. Buchwald, J. Am. Chem. Soc., 2001, 123, 12202.
[12] a) T. Kondo, T. Mitsudo, Chem. Rev., 2000, 100, 3205; b) F. Y. Kwong,
S. L. Buchwald, Org. Lett., 2002, 4, 3517; c) C. G. Bates, R. K.
Gujadhur, D. Venkataraman, Org. Lett., 2002, 4, 2803; c) G. Dilauro, L.
Cicco, F. M. Perna, P. Vitale, V. Capriati, C. R. Chimie, 2017, 20, 617.
[13] T. Hirao, T. Masunaga, Y. Ohshiro, T. Agawa, Synthesis, 1981, 56.
[14] For recent examples, see: a) T. Wang, S. Sang, L. Liu, H. Qaio, Y. Gao,
Y. Zhao, J. Org. Chem., 2014, 79, 608; b) T. Fu, H. Qiao, Z. Peng, G.
Hu, X. Wu, Y. X. Gao, Y. Zhao, Org. Biomol. Chem., 2014, 12, 2895; c)
J. Yang, T. Chen, L.-B. Han, J. Am. Chem. Soc., 2015, 137, 1782; d)
J.-S. Zhang, T. Chen, J. Yang, L.-B. Han, Chem. Commun., 2015, 51,
7540; e) W. C. Fu, C. M. So, F. Y. Kwong, Org. Lett., 2015, 17, 5906.
[15] a) Y.-M. Li, M. Sun, H.-L. Wang, Q.-P. Tian, S.-D. Yang, Angew.Chem.,
2013, 125, 4064; Angew. Chem. Int. Ed., 2013, 52, 3972; b) Y.-R. Chen,
W.-L. Duan, J. Am. Chem. Soc., 2013, 135, 16754; c) C. Li, T. Yano, N.
Ishida, M. Murkami, Angew. Chem., 2013, 125, 9983; Angew. Chem.
Int. Ed., 2013, 52, 9801; d) C.-G. Feng, M. Ye, K.-J. Xiao, S. Li, J.-Q.
Yu, J. Am. Chem. Soc., 2013, 135, 9322; e) Z.-Q. Lin, W.-Z. Wang, S.-
B. Yan, W.-L. Duan, Angew. Chem., 2015, 127, 6363; Angew. Chem.
Int. Ed., 2015, 54, 6265.
[23] R. H. Beddoe, K. G. Andrews, V. Magné, J. D. Cuthbertson, J. Saska,
A. L. Shannon-Little, S. E. Shanahan, H. F. Sneddon, R. M. Denton,
Science, 2019, 365, 910.
[24] S. Demkowicz, J. Rachon, M. Daśkoa, W. Kozak, RSC Adv., 2016, 6,
7101.
[25] W.-S. Huang, S. Liu, D. Zou, M. Thomas, Y. Wang, T. Zhou, J. Romero,
A. Kohlmann, F. Li, J. Qi, L. Cai, T. A. Dwight, Y. Xu, R. Xu, R. Dodd, A.
Toms, L. Parillon, X. Lu, R. Anjum, S. Zhang, F. Wang, J. Keats, S. D.
Wardwell, Y. Ning, Q. Xu, L. E. Moran, Q. K. Mohemmad, H. G. Jang, T.
Clackson, N. I. Narasimhan, V. M. Rivera, X. Zhu, D. Dalgarno, W. C.
Shakespeare, J. Med. Chem., 2016, 59, 4948.
[26] T. O’Hare, R. Pollock, E. P. Stoffregen, J. A. Keats, O. M. Abdullah, E.
M. Moseson, V. M. Rivera, H. Tang, C. A. Metcalf III, R. S. Bohacek, Y.
Wang, R. Sundaramoorthi, W. C. Shakespeare, D. Dalgarno, T.
Clackson, T. K. Sawyer, M. W. Deininger, B. J. Druker, Blood, 2004,
104, 2532.
[27] O. Herd, A. Hebler, M. Hingst, P. Machnitzki, M. Terrer, O. Stelzer,
Catal. Todаy, 1998, 42, 413.
[16] a) D. Leca, L. Fensterbank, E. Lacote, M. Malacria, Chem. Soc. Rev.,
2005, 34, 858; b) J. Ke, Y.-L. Tang, H. Yi, Y.-L. Li, Y.-D. Chen, C. Lu,
A.-W. Lei, Angew. Chem., 2015, 127, 6704; Angew. Chem. Int. Ed.,
2015, 54, 6604; c) X.-Q. Pan, J.-J. Zou, W.-B. Yi, W. Zhang,
Tetrahedron, 2015, 71, 7481.
[28] N. I. Ivanova, P.
A Volkov. K. O. Khrapova, L. I. Larina, I. Y.
Bagryanskaya, N. K.Gusarova, B. A. Trofimov, Russ. J. Org. Chem.,
2016, 52, 772.
[29] G. Müller, D. Sanz, J. Organomet. Chem., 1995, 495, 103.
[30] Interestingly, Stalke and co-workers recently succeeded in the
crystallization of water-containing organopotassium complexes, which
surprisingly revealed to be strongly recalcitrant to hydrolysis; see: a) I.
Koehne, S. Bachmann, R. Herbst-Irmer, D. A. Stalke, Angew. Chem.,
2017, 129, 15337; Angew. Chem. Int. Ed., 2017, 56, 15141; b) J.
Kretsch, A. Kreyenschmidt, R. Herbst-Irmer, D. A. Stalke, Dalton
Trans., 2018, 47, 12606.
[17] a) D. Zhao, R. Wang, Chem. Soc. Rev., 2012, 41, 2095; b) M. Hatano,
T. Horibe, K. Ishihara, Angew. Chem., 2013, 125, 4647; Angew. Chem.
Int. Ed., 2013, 52, 4549; c) J. Lu, J. Ye, W.-L. Duan, Chem. Commun.,
2014, 50, 698; d) A. M. Geer, A. L. Serrano, B. de Bruin, M. A. Ciriano,
C. Tejel, Angew. Chem., 2015, 127, 482; Angew. Chem. Int. Ed., 2015,
54, 472.
[18] V. A. Pollard, A. Young, R. McLellan, A. R. Kennedy, T. Tuttle, R. E.
Mulvey, Angew. Chem., 2019, 131, 12419; Angew. Chem. Int. Ed.,
2019, 58, 12291.
[31] I. Arribas, S. Vargas, M. Rubio, A. Suárez, C. Domene, E. Álvarez, A.
Pizzano, Organometallics, 2010, 29, 5791.
[19] In this context, we would like to highlight an elegant reductive
rearrangement reaction reported by Stalke and Steiner of a lithium
iminophosphorane to a lithium phosphine amide; see: A. Steiner, D.
Stalke, Angew. Chem., 1995, 107, 1908; Angew. Chem. Int. Ed. Engl.,
1995, 34, 1752. Interestingly, iminophosphoranes have also been
proven to be much more bio-compatible than phosphine oxides, with
the P=N bond being equally polar as the P=O bond; see: N. Kocher, D.
Leusser, A. Murso, D. Stalke, Chem. Eur. J., 2004, 10, 3622.
[32] H. Fernández-Pérez, P. Etayo, J. L. Núñez-Rico, B. Balakrishna, A.
Vidal-Ferrán, RSC Adv., 2014, 4, 58440.
[33] The Fundación BBVA accepts no responsibility for the opinions,
statements and contents included in the project and/or the results
thereof, which are entirely the responsibility of the authors.
[20] a) S. Van der Jeught, C. V. Stevens, Chem. Rev., 2009, 109, 2672; b)
C. S. Demmer, N. Krogsgaard-Larsen, L. Bunch, Chem. Rev., 2011,
111, 7981; c) C. Queffꢀlec, M. Petit, P. Janvier, D. A. Knight, B. Bujoli,
Chem. Rev., 2012, 112, 3777; d) J. L. Montchamp, Acc. Chem. Res.,
2014, 47, 77; e) H. Zhang, R.-B. Hu, X.-Y. Zhang, S.-X. Li, S.-D. Yang,
Chem. Commun., 2014, 50, 4686; f) M. V. V. Duro, D. Mustafa, B. A.
Kashemirov, C. E. McKenna, Phosphorus in Chemical Biology and
Medicinal Chemistry, in Organophosphorus Chemistry: From Molecules
to Applications (Ed. V. Iaroshenko), Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, 2019.
[21] a) T. M. Shaikh, C.-M. Weng, F.-E. Hong, Coord. Chem. Rev., 2012,
256, 771; b) P. E. Sues, A. J. Lough, R. H. Morris, Inorg. Chem., 2012,
51, 9322; c) K. Miyata, Y. Hasegawa, Y. Kuramochi, T. Nakagawa, T.
6
This article is protected by copyright. All rights reserved.