10.1002/anie.201813490
Angewandte Chemie International Edition
COMMUNICATION
[6]
[7]
a) Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc.
2010, 132, 1226; b) Noh, D.; Yoon, S. K.; Won, J.; Lee, J. Y.; Yun, J.
Chem. Asian J. 2011, 6, 1967.
pathway with a rare example of direct enantio-convergent
transformation.
(a) Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.; Morken, J.
P. J. Am. Chem. Soc. 2004, 126, 16328; (b) Burks, H. E.; Liu, S.;
Morken, J. P. J. Am. Chem. Soc. 2007, 129, 8766; (c) Burks, H. E.;
Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 9134; (d)
Kliman, L. T.; Mlynarski, S. N.; Ferris, G. E.; Morken, J. P. Angew.
Chem., Int. Ed. 2012, 51, 521; Angew. Chem. 2012, 124, 536.
a) Gao, X.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 9308; b) Gao, X.;
Hall, D. G. J. Am. Chem. Soc. 2005, 127, 1628; c) Penner, M.;
Rauniyar, V.; Kaspar, L. T.; Hall, D. G. J. Am. Chem. Soc. 2009, 131,
14216.
Acknowledgements
We are grateful to the Nanyang Technological University
(M4011633), Ministry of Education Tier 2 Grant (MOE2016-T2-
1-087) and Singapore University of Technology and Design
[8]
(T1MOE1706
&
IDG31800104) for financial support.
Computational resources from National Supercomputing Centre
(Singapore) are also gratefully acknowledged.
[9]
a) Carosi, L.; Hall, D. G. Angew. Chem., Int. Ed. 2007, 46, 5913; Angew.
Chem. 2007, 119, 6017; b) Peng, F.; Hall, D. G. Tetrahedron Lett. 2007,
48, 3305; c) Potter, B.; Szymaniak, A. A.; Edelstein, E. K.; Morken, J. P.
J. Am. Chem. Soc. 2014, 136, 17918.
Keywords: chiral tertiary allylboronate • asymmetric allylic
borylation • enantio-convergent synthesis • copper-guanidine
catalyst • direct enantio-convergent transformation
[10]
a) Gao, X.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 9308; b) Lessard,
S.; Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2009, 131, 9612; c) Kim, Y.;
Hall, D. G. Org. Biomol. Chem. 2016, 14, 4739.
[1]
[2]
a) Collins, B. S. L.; Wilson, C. M.; Myers, C. M.; Aggarwal, V. K. Angew.
Chem., Int. Ed. 2017, 56, 11700–11733; Angew. Chem. 2017, 129,
11860; b) Scott, H. K.; Aggarwal, V. K. Chem. Eur. J. 2011, 17, 13124;
c) Sanford, C.; Aggarwal, V. K. Chem. Commun. 2017, 53, 5481; d)
Leonori, D.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2015, 54, 1082;
Angew. Chem. 2015, 127, 1096; e) Diner, C.; Szabó, K. J. J. Am. Chem.
Soc. 2017, 139, 2.
[11] a) Kitanosono, T.; Xu, P.; Kobayashi, S. Chem. Commun. 2013, 49,
8184; b) Luo, Y.; Roy, I. D.; Madec, A. G.; Lam, H. W. Angew. Chem.,
Int. Ed. 2014, 53, 4186; Angew. Chem. 2014, 126, 4270.
[12] a) Gerdin, M.; Moberg, C. Adv. Synth. Catal. 2005, 347, 749. b) Kojima,
R.; Akiyama, S.; Ito, H. Angew. Chem., Int. Ed. 2018, 57, 7196; Angew.
Chem. 2018, 130, 7314.
[13] a) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258; Angew. Chem.
2007, 120, 264; b) Bhat, V.; Welin, E. R.; Guo, X.; Stoltz, B. M. Chem.
Rev. 2017, 117, 4528; c) Schäfer, P.; Sidera, M.; Palacin, T.; Fletcher,
S. P. Chem. Commun. 2017, 53, 12499; d) Langlois, J.-B.; Alexakis, A.
Chem. Commun. 2009, 3868; d) Langlois, J.-B.; Alexakis, A. Chem.
Commun. 2009, 3868; e) Fananas-Mastral, M.; Feringa, B. L. J. Am.
Chem. Soc. 2010, 132, 13152; f) Langlois, J.-B.; Emery, D.; Mareda, J.;
Alexakis, A. Chem. Sci. 2012, 3, 1062; g) You, H.; Rideau, E.; Sidera,
M.; Fletcher, S. P. Nature 2015, 517, 351; h) Sidera, M.; Fletcher, S. P.
Chem. Commun. 2015, 51, 5044; i) Sidera, M.; Fletcher, S. P. Nat.
Chem. 2015, 7, 935; j) Rideau, E.; Fletcher, S. P. Beilstein J. Org.
Chem. 2015, 11, 2435; k) Rideau, E.; You, H.; Sidera, M.; Claridge, T.
D. W.; Fletcher, S. P. J. Am. Chem. Soc. 2017, 139, 5614; l) Schäfer,
P.; Palacin, T.; Sidera, M.; Fletcher, S. P. Nature Commun. 2017, 8,
15762.
a) Chen, I.-H.; Yin, L.; Itano, W.; Kanai, M.; Shibasaki, M. J. Am. Chem.
Soc. 2009, 131, 11664; b) O’Brien, J. M.; Lee, K.; Hoveyda, A. H. J. Am.
Chem. Soc. 2010, 132, 10630; c) Radomkit, S.; Hoveyda, A. H. Angew.
Chem., Int. Ed. 2014, 53, 3387; Angew. Chem. 2014, 126, 3455; d) Wu,
H.; Garcia, J. M.; Haeffner, F.; Radomkit, S.; Zhugralin, A. R.; Hoveyda,
A. H. J. Am. Chem. Soc. 2015, 137, 10585; e) Feng, X.; Yun, J. Chem.
Eur. J. 2010, 16, 13609; f) Hu, N.; Zhao, G.; Zhang, Y.; Liu, X.; Li, G.;
Tang, W. J. Am. Chem. Soc. 2015, 137, 6746; g) Shoba, V. M.;
Thacker, N. C.; Bochat, A. J.; Takacs, J. M. Angew. Chem., Int. Ed.
2016, 55, 1465; Angew. Chem. 2016, 128, 1487; h) Guzman-Martinez,
A.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10634; i) Kubota, K.;
Osaki, S.; Jin, M.; Ito, H. Angew. Chem., Int. Ed. 2017, 56, 6646;
Angew. Chem. 2017, 129, 6746; j) Liu, J.; Nie, M.; Zhou, Q.; Gao, S.;
Jiang, W.; Chung, L. W.; Tang, W.; Ding, K. Chem. Sci. 2017, 8, 5161.
a) Leonori, D.; Aggarwal, V. K. Acc. Chem. Res. 2014, 47, 3174; b)
Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature
2008, 456, 778; c) Bagutski, V.; French, R. M.; Aggarwal, V. K. Angew.
Chem., Int. Ed. 2010, 49, 5142; Angew. Chem. 2010, 122, 5268; d)
Pulis, A. P.; Blair, D. J.; Torres, E.; Aggarwal, V. K. J. Am. Chem. Soc.
2013, 135, 16054; e) Watson, C. G.; Aggarwal, V. K. Org. Lett. 2013,
15, 1346; f) Pulis, A. P.; Aggarwal, V. K. J. Am. Chem. Soc. 2012, 134,
7570; g) Stymiest, J. L.; Dutheuil, G.; Mahmood, A.; Aggarwal, V. K.
Angew. Chem., Int. Ed. 2007, 46, 7491; Angew. Chem. 2007, 119,
7635.
[3]
[14] a) Leow, D.; Tan, C.-H. Chem. Asian J. 2009, 4, 488; b) Leow, D.; Tan,
C.-H. Synlett. 2010, 11, 1589; c) Fu, X.; Tan, C.-H. Chem. Commun.
2011, 47, 8210; d) Shen, J.; Nguyen, T. T.; Goh, Y.-P.; Ye, W.; Fu, X.;
Xu, J.; Tan, C.-H. J. Am. Chem. Soc. 2006, 128, 13692; e) Leow, D.;
Lin, S.; Chittimalla, S. K.; Fu, X.; Tan, C.-H. Angew. Chem., Int. Ed.
2008, 47, 5641; Angew. Chem. 2008, 120, 5723; f) Jiang, Z.; Pan, Y.;
Zhao, Y.; Ma, T.; Lee, R.; Yang, Y.; Huang, K.-W.; Wong, M. W.; Tan,
C.-H. Angew. Chem., Int. Ed. 2009, 48, 3627; Angew. Chem. 2009,
121, 3681; g) Liu, H.; Leow, D.; Huang, K.-W.; Tan, C.-H. J. Am. Chem.
Soc. 2009, 131, 7212; h) Zong, L.; Tan, C.-H. Acc. Chem. Res. 2017,
50, 842.
[4]
a) Ito, H.; Kawakami, C.; Sawamura, M. J. Am. Chem. Soc. 2005, 127,
16034; b) Ito, H.; Ito, S.; Sasaki, Y.; Matsuura, K.; Sawamura, M. J. Am.
Chem. Soc. 2007, 129, 14856; c) Ito, H.; Okura, T.; Matsuura, K.;
Sawamura, M. Angew. Chem., Int. Ed. 2010, 49, 560; Angew. Chem.
2010, 122, 570; d) Ito, H.; Kunii, S.; Sawamura, M. Nat. Chem. 2010, 2,
972; e) Park, J. K.; Lackey, H. H.; Ondrusek, B. A.; McQuade, D. T. J.
Am. Chem. Soc. 2011, 133, 2410; f) Park, J. K.; McQuade, D. T.
Angew. Chem., Int. Ed. 2012, 51, 2717; Angew. Chem. 2012, 124,
2771; g) Yamamoto, E.; Takenouchi, Y.; Ozaki, T.; Miya, T.; Ito, H. J.
Am. Chem. Soc. 2014, 136, 16515; h) Zhou, Q.; Srinivas, H. D.; Zhang,
S.; Watson, M. P. J. Am. Chem. Soc. 2016, 138, 11989.
[15] a) Zhu, Y.; Liu, X.; Dong, S.; Zhou, Y.; Li, W.; Lin, L.; Feng, X. Angew.
Chem., Int. Ed. 2014, 53, 1636; Angew. Chem. 2014, 126, 1662; b)
Tang, Y.; Chen, Q.; Liu, X.; Wang, G.; Lin, L.; Feng, X. Angew. Chem.,
Int. Ed. 2015, 54, 9512; Angew. Chem. 2015, 127, 96482; c) Chen, Q.;
Tang, Y.; Huang, T.; Liu, X.; Lin, L.; Feng, X. Angew. Chem., Int. Ed.
2016, 55, 5286; Angew. Chem. 2016, 128, 5372; d) Dong, S.; Feng, X.;
Liu, X. Chem. Soc. Rev. 2018, 47, 8525.
[16] a) Cui, X.-Y.; Ge, Y.; Tan, S. M.; Jiang, H.; Tan, D.; Lu, Y.; Lee, R.; Tan,
C.-H. J. Am. Chem. Soc. 2018, 140, 8448. b) Makida, Y.; Takayama,
Y.; Ohmiya, H.; Sawamura, M. Angew. Chem. Int. Ed. 2013, 52, 5350;
Angew. Chem. 2013, 125, 5458; c). Giri, R.; Brusoe, A.; Troshin, K.;
Wang, J. Y.; Font, M.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 793.
[17] Hoveyda also employed Cu(II) salts as catalysts but no investigation of
true catalytic species was conducted (ref. 2h); while Kobayashi
[5]
a) Althaus, M.; Mahmood, A.; Suárez, J. R.; Thomas, S. P.; Aggarwal,
V. K. J. Am. Chem. Soc. 2010, 132, 4025; b) Chen, J. L.-Y.; Aggarwal,
V. K. Angew. Chem., Int. Ed. 2014, 53, 10992; Angew. Chem. 2014,
126, 11172.
This article is protected by copyright. All rights reserved.