Communication
ChemComm
3 A. Ding, M. Meazza, H. Guo, J. W. Yang and R. Rios, Chem. Soc. Rev.,
2018, 47, 5946.
to the major product (R)-3. Indeed, our DFT studies revealed
that the intermediate B is 5.0 kcal molꢀ1 more stable, and this
may also suggest a lower kinetic barrier during the migratory
insertion of the intermediate B.
4 For selected reviews of transition-metal-catalyzed C–H functionali-
zation, see: (a) L. McMurray, F. O’Hara and M. J. Gaunt, Chem. Soc.
Rev., 2011, 40, 1885; (b) S. H. Cho, J. Y. Kim, J. Kwak and S. Chang,
Chem. Soc. Rev., 2011, 40, 5068; (c) L. Ackermann, Chem. Rev., 2011,
111, 1315; (d) B.-J. Li and Z.-J. Shi, Chem. Soc. Rev., 2012, 41, 5588;
(e) P. B. Arockiam, C. Bruneau and P. H. Dixneuf, Chem. Rev., 2012,
112, 5879; ( f ) Z. Shi, D. C. Koester, M. Boultadakis-Arapinis and
F. Glorius, J. Am. Chem. Soc., 2013, 135, 12204; (g) G. Song and X. Li,
Acc. Chem. Res., 2015, 48, 1007; (h) T. Gensch, M. N. Hopkinson,
F. Glorius and J. Wencel-Delord, Chem. Soc. Rev., 2016, 45, 2900;
(i) Y. Yang, J. Lan and J. You, Chem. Rev., 2017, 117, 8787;
( j) J. R. Hummel, J. A. Boerth and J. A. Ellman, Chem. Rev., 2017,
117, 9163; (k) G. Cera and L. Ackermann, Top. Curr. Chem., 2016,
374, 191; (l) A. S. K. Hashmi, Acc. Chem. Res., 2014, 47, 864.
In summary, we have developed an efficient and mild
protocol for the enantioselective synthesis of spirocyclic imines
through a procedure of rhodium-catalyzed enantioselective
C–H functionalization and N–O cleavage. This asymmetric
[4+1] spiroannulation occurred under redox-neutral and acid/
base additive-free conditions via C–H bond activation of the
oxime ester with cyclic a-diazo compounds as a coupling
reagent. The reaction proceeded in high efficiency and features
broad substrate scope, mild and redox-neutral reaction condi-
tions, and high to excellent enantioselectivities. Further develop-
ment of new reaction modes of rhodium-catalyzed enantio-
selective C–H activation reactions is underway in our laboratory.
We acknowledge the financial support for this work from
NSFC (21525208 and 21801066) and the Shaanxi Normal
University.
˜
5 For individual reports, see: (a) A. Seoane, N. Casanova, N. Quinones,
˜
´
J. L. Mascarenas and M. Gulıas, J. Am. Chem. Soc., 2014, 136, 7607;
(b) M.-B. Zhou, R. Pi, M. Hu, Y. Yang, R.-J. Song, Y. Xia and J.-H. Li,
Angew. Chem., Int. Ed., 2014, 53, 11338; (c) D. J. Burns, D. Best,
M. D. Wieczysty and H. W. Lam, Angew. Chem., Int. Ed., 2015,
54, 9958; (d) B. Liu, P. Hu, Y. Zhang, Y. Li, D. Bai and X. Li,
Org. Lett., 2017, 19, 5402.
6 For selected examples of synthesis of spirocyclic compounds, see:
(a) T. Nishimura, Y. Ebe and T. Hayashi, J. Am. Chem. Soc., 2013,
135, 2092; (b) J. Zheng, S.-B. Wang, C. Zheng and S.-L. You, J. Am.
Chem. Soc., 2015, 137, 4880; (c) H. Li, R. Gontla, J. Flegel, C. Merten,
S. Ziegier, A. P. Antonchick and H. Waldmann, Angew. Chem., Int.
Ed., 2019, 58, 307; (d) S. Guo, L. Sun, Y. Liu, N. Ma, X. Zhang and
X. Fan, Org. Lett., 2019, 21, 4082; (e) Z. Song, Z. Yang, P. Wang,
Z. Shi, T. Li and X. Cui, Org. Lett., 2020, 22, 6272.
Conflicts of interest
The authors declare no competing financial interest.
7 For selected reviews, see: (a) C. G. Newton, D. Kossler and
N. Cramer, J. Am. Chem. Soc., 2016, 138, 3935. Selected examples:
(b) B. Ye and N. Cramer, Science, 2012, 338, 504; (c) B. Ye and
N. Cramer, J. Am. Chem. Soc., 2013, 135, 636; (d) B. Ye, P. A. Donets
and N. Cramer, Angew. Chem., Int. Ed., 2014, 53, 507; (e) Y. Sun and
N. Cramer, Angew. Chem., Int. Ed., 2017, 56, 364; ( f ) Y. Sun and
N. Cramer, Angew. Chem., Int. Ed., 2018, 57, 15539; (g) M. Brauns
and N. Cramer, Angew. Chem., Int. Ed., 2019, 58, 8902;
(h) S.-G. Wang, Y. Liu and N. Cramer, Angew. Chem., Int. Ed., 2019,
58, 18136.
Notes and references
1 For reviews on the synthesis of selected spirocyclic natural products
and drug discovery, see: (a) S. Kotha, A. Deb, K. Lahiri and
E. Manivannan, Synthesis, 2009, 165; (b) V. A. D’yakonov,
O. A. Trapeznikova, A. de Meijere and U. M. Dzhemilev, Chem.
Rev., 2014, 114, 5775; (c) Y. Zheng, C. M. Tice and S. B. Singh, Bioorg.
Med. Chem. Lett., 2014, 24, 3673. For individual reports, see;
(d) T. Doi, Y. Iijima, M. Takasaki and T. Takahashi, J. Org. Chem.,
2007, 72, 3667; (e) A. Bolognese, G. Correale, M. Manfra, A. Esposito,
E. Novellino and A. Lavecchia, J. Med. Chem., 2008, 51, 8148;
( f ) S. A. Snyder, T. C. Sherwood and A. G. Ross, Angew. Chem., Int.
Ed., 2010, 49, 5146; (g) T. Trieselmann, H. Wagner, K. Fuchs,
D. Hamprecht, D. Berta, P. Cremonesi, R. Streicher, G. Luippold,
A. Volz, M. Markert and H. Nar, J. Med. Chem., 2014, 57, 8766.
2 For selected reviews, see: (a) J.-H. Xie and Q.-L. Zhou, Acc. Chem.
Res., 2008, 41, 581; (b) S.-F. Zhu and Q.-L. Zhou, Acc. Chem. Res.,
2012, 45, 1365; (c) K. Ding, Z. Han and Z. Wang, Chem. – Asian J.,
¨
8 T. K. Hyster, L. Knorr, T. R. Ward and T. Rovis, Science, 2012,
338, 500.
9 (a) J. Zheng and S.-L. You, Angew. Chem., Int. Ed., 2014, 53, 13244;
(b) J. Zheng, W.-J. Cui, C. Zheng and S.-L. You, J. Am. Chem. Soc.,
2016, 138, 5242.
10 (a) F. Wang, Z. Qi, Y. Zhao, S. Zhai, G. Zheng, R. Mi, Z. Huang,
X. Zhu, X. He and X. Li, Angew. Chem., Int. Ed., 2020, 59, 13288;
(b) J. Sun, W. Yuan, R. Tian, P. Wang, X. Zhang and X. Li,
Angew. Chem., Int. Ed., 2020, 59, 22706.
2009, 4, 32; (d) Q.-L. Zhou and J.-H. Xie, Top. Organomet. Chem., 11 (a) X. Chen, S. Yang, H. Li, B. Wang and G. Song, ACS Catal., 2017,
2011, 36, 1. For individual reports, see: (e) V. B. Birman,
A. L. Rheingold and K.-C. Lam, Tetrahedron: Asymmetry, 1999,
10, 125; ( f ) M. A. Arai, T. Arai and H. Sasai, Org. Lett., 1999,
1, 1795; (g) Z. Freixa, M. S. Beentjes, G. D. Batema,
C. B. Dieleman, G. P. F. van Strijdonck, J. N. H. Reek,
P. C. J. Kamer, J. Fraanje, K. Goubitz and P. W. N. M. van Leeuwen,
Angew. Chem., Int. Ed., 2003, 42, 1284; (h) Z. Han, Z. Wang, X. Zhang
7, 2392; (b) T. Li, C. Zhou, X. Yan and J. Wang, Angew. Chem., Int. Ed.,
2018, 57, 4048; (c) E. A. Trifonova, N. M. Ankudinov, A. A. Mikhaylov,
D. A. Chusov, Y. V. Nelyubina and D. S. Perekalin, Angew. Chem., Int.
Ed., 2018, 57, 7714; (d) S. Satake, T. Kurihara, K. Nishikawa,
T. Mochizuki, M. Hatano, K. Ishihara, T. Yoshino and
S. Matsunaga, Nat. Catal., 2018, 1, 585; (e) H. Li, X. Yan, J. Zhang,
W. Guo, J. Jiang and J. Wang, Angew. Chem., Int. Ed., 2019, 58, 6732.
and K. Ding, Angew. Chem., Int. Ed., 2009, 48, 5345; (i) J. Li, G. Chen, 12 S. R. Chidipudi, D. J. Burns, I. Khan and H. W. Lam, Angew. Chem.,
Z. Wang, R. Zhang, X. Zhang and K. Ding, Chem. Sci., 2011, 2, 1141; Int. Ed., 2015, 54, 13975.
( j) X. Wang, Z. Han, Z. Wang and K. Ding, Angew. Chem., Int. Ed., 13 L. Kong, X. Han, S. Liu, Y. Zou, Y. Lan and X. Li, Angew. Chem., Int.
2012, 51, 936; (k) Z. Zheng, Y. Cao, Q. Chong, Z. Han, J. Ding, C. Luo, Ed., 2020, 59, 7188.
Z. Wang, D. Zhu, Q.-L. Zhou and K. Ding, J. Am. Chem. Soc., 2018, 14 B. Ye and N. Cramer, Angew. Chem., Int. Ed., 2014, 53, 7896.
140, 10374.
15 D. Zhao, F. Lied and F. Glorius, Chem. Sci., 2014, 5, 2869.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 8268–8271 | 8271