622
KISELEV
and (III) in toluene solution, a diverse ratio ꢀV=
ꢀVr-n was obtained: 1.15 and 0.85, respectively. With
/
5. George, A. V.; Isaacs, N. S. J Chem Soc, Perkin Trans
II 1985, 1845–1848.
6. David, R. L.; Frederikse, H. P. R. Handbook of Chem-
istry and Physics; 75th ed., CRC Press: Boca Raton, FL,
1994–1995; section 3.
7. Pepper, J. M.; Robinson, B.P. Can J Chem 1966, 44,
1809–1816.
8. Berson, J. A.; Mueller, W. A. J Am Chem Soc 1961, 83,
4940–4947.
9. Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic
Solvents, 4th ed.; Wiley-Interscience: New York, 1986.
10. Kiselev, V. D.; Konovalov, A. I. Russ J Gen Chem, Int
Ed 1974, 10, 6–10.
11. Kiselev, V. D.; Kashaeva, E. A.; Luzanova, N. A.;
Konovalov, A. I. Thermochim Acta 1997, 303, 225–228.
12. Kiselev, V. D. Int J Chem Kinet 2010, 42, 117–125.
13. Gayer, K. H.; Kothari, P. S. Thermochim Acta 1976, 15,
301–305.
14. Kiselev, V. D.; Konovalov, A. I. J Phys Org Chem 2009,
22, 466–483.
15. Solomonov, B. N.; Novikov, V. B. J Phys Org Chem
2008, 21, 2–13.
16. Handbook of Photochemistry, 3rd ed.; CRC Taylor and
Francis: Boca Raton, FL, 2006, 493–527.
17. Langer, V.; Sieler, J.; Becker, H.-D. Z Kristallogr B
1992, 199, 304–306.
18. Isaacs, N. S. Liquid Phase High Pressure Chemistry;
Wiley-Interscience: Chichester, UK, 1981; Chap. 2.
19. Le Noble, W. J. (Ed); Organic High Pressure Chemistry;
Elsevier: Amsterdam, the Netherlands, 1988; Chap. 1.
20. Wurche, F.; Kla¨rner, F.-G. In: High Pressure Chem-
istry; van Eldik, R.; Kla¨rner, F-G., Eds.; Wiley-VCH:
Weinheim, Germany, 2002; Chap. 2.
21. Asano, T.; le Noble, W. J. Chem Rev 1978, 78, 408–489.
22. van Eldik, R.; Asano, T.; le Noble, W. J. Chem Rev
1989, 89, 549–688.
23. Drljaca, A.; Hubbard, C. D.; van Eldik, R.; Asano, T.;
Basilevsky, M. A.; le Noble, W. J. Chem Rev 1998, 98,
2167–2289.
corr
a solvent change for reaction (II) from acetonitrile to
toluene, the ratio ꢀV=
/ꢀVr-n transforms from a
corr
“normal” (–20.0/–23.6 = 0.85 [24]) to an “abnormal”
value (–21.7/–18.9 = 1.15).
SUMMARY
It was noted that the solvent influence on the changes
of PMV and the enthalpy of solution is usually very dif-
ferent, in contrast to the changes in entropy [12,18,19].
A comparison of the kinetic parameters of reactions
(II) and (III) makes it clear that the difference in
the rate constants is caused by the variety in the en-
thalpy of activation, with nearly the same values of
activation entropy and activation volume. It was con-
cluded that the apparent volume of activation, obtained
with the pressure-independent concentrations, should
be corrected for second-order reactions on the value
RTβT.
It is necessary to note that the solvent influence
on the values of PMVs for different planar structures
of dienes and dienophiles (except tetracyanoethylene
as a strong π-acceptor) with the surface accessible
for solvation is usually small [31]. On the contrary,
large differences of the partial molar volumes of the
branched molecular structure of adducts were observed
[12,21–23,32]. The results obtained in this work are in
agreement with the suggestion [12] that the abnormal
volume ratio ꢀV=corr /ꢀVr-n > 1 for the forward isopo-
lar Diels–Alder reactions can be caused by the differ-
ing abilities of solvent molecules to penetrate into the
large branched molecules of the activated complex and
adduct.
24. Kiselev V. D.; Iskhakova G. G.; Kashaeva E. A.; Shihab
M. S.; Medvedeva M. D.; Konovalov A. I. Russ J Gen
Chem, Int Ed 2003, 73, 1884–1892.
ACKNOWLEDGMENTS
25. Kiselev, V. D.; Iskhakova, G. G.; Kashaeva, E. A.;
Potapova, L. N.; Konovalov, A. I. Russ Chem Bull, Int
Ed 2004, 53, 2490–2495.
26. Hamann D.; le Noble W. G. J Chem Educ 1984, 61,
658–660
I am grateful to Ilzida Shakirova, Helen Kashaeva, and Lubov
Potapova for carrying out some measurements. I also appre-
ciate fruitful comments from the reviewers, which helped for
me in finalizing the manuscript.
27. Williams, A. M. Trans Faraday Soc 1920, 16, 458–463.
28. Eyring, H. Trans Faraday Soc 1938, 34, 41–48.
29. Grieger, R. A.; Eckert, C. A. Ind Eng Chem Fund 1971,
10, 369–374.
BIBLIOGRAPHY
1. Grieger, R. A.; Eckert, C. A. J Chem Soc, Faraday Trans
I 1970, 66, 2579–2584.
2. Kla¨rner, F.-G.; Breitkopf, V. Eur J Org Chem 1999,
2757–2762.
3. Jenner, G.; Papadopoulos, M.; Rimmelin, J. J Org Chem
1983, 48, 748–749.
30. Kiselev, V. D.; Bolotov, A. V.; Satonin, A. P.; Shakirova,
I. I.; Kashaeva, E. A.; Konovalov, A. I. J Phys Chem B
2008, 112, 6674–6682.
31. Kiselev, V. D.; Kashaeva, E. A.; Iskhakova, G. G.;
Potapova, L. N.; Konovalov, A. I. J Phys Org Chem
2006, 19, 179–186.
4. Kiselev, V. D.; Kashaeva, E. A.; Konovalov, A. I. Tetra-
hedron 1999, 55, 1153–1162.
32. Ruelle, P.; Farina-Cuendet, A.; Kesselring, U. W. J Am
Chem Soc 1996, 118, 1777–1784.
International Journal of Chemical Kinetics DOI 10.1002/kin.20800