10.1002/adsc.201900157
Advanced Synthesis & Catalysis
coupling of thiyl radical (IV) gives sulfide 9 as by-
Xie, Y.-J. Li, J. Qu, Y. Duan, J. Hu, K.-J. Liu, Z. Cao,
W.-M. He. Green Chem. 2017, 19, 5642−5646; f) D.-Q.
Dong, S.-H. Hao, D.-S. Yang, L.-X. Li, Z.-L. Wang.
Eur. J. Org. Chem. 2017, 6576−6592; g) L.-Y. Xie, S.
Peng, F. Liu, G.-R. Chen, W. Xia, X. Yu, W.-F. Li, Z.
Cao, W.-M. He. Org. Chem. Front. 2018, 5,
2604−2609.
products in the present transformation.
Conclusion
In conclusion, a novel and efficient protocol was
developed for the synthesis of unsymmetrical
[2] a) C. Wu, X. Xin, Z.-M. Fu, L.-Y. Xie, K.-J. Liu, Z.
Wang, W. Li, Z.-H. Yuan, W.-M. He. Green Chem.
2017, 19, 1983; b) S.-h. Hao, L.-X. Li, D.-Q. Dong, Z.-L.
Wang, X.-Y. Yu. Tetrahedron Lett. 2018, 59,
4073−4075; c) D. Yang, P. Liu, W. Wei, N. Zhang, M.
Yue, J. You, H. Wang. ChemCatChem. 2014, 6,
3434−3439; d) K.-J. Liu, S. Jiang, L.-H. Lu, L.-L. Tang,
S.-S. Tang, H.-S. Tang, Z. Tang, W.-M. He, X. Xu.
Green Chem. 2018, 20, 3038−3043; e) C. Wu, L.-H. Lu,
A.-Z. Peng, G.-K. Jia, C. Peng, Z. Cao, Z. Tang, W.-M.
He, X. Xu. Green Chem. 2018, 20, 3683−3688; f) Z. Lai,
Z. Li, Y. Liu, P. Yang, X. Fang, W. Zhang, B. Liu, H.
Chang, H. Xu, Y. Xu. J. Org. Chem. 2018, 83, 145−153;
g) L.-Y. Xie, J. Qu, S. Peng, K.-J. Liu, Z. Wang, M.-H.
Ding, Y. Wang, Z. Cao, W.-M. He. Green Chem. 2018,
20, 760−764; h) N. Zhang, D. Yang, W. Wei, L. Yuan,
Y. Cao, H. Wang. RSC Advances. 2015, 5, 37013–37017;
i) L.-Y. Xie, S. Peng, L.-L. Jiang, X. Peng, W. Xia, X.
Yu, X.-X. Wang, Z. Cao, W.-M. He. Org. Chem. Front.
2019, 6, 167–169; j) L.-H. Lu, S.-J. Zhou, M. Sun, J.-L.
Chen, W. Xia, X. Yu, X. Xu, W.-M. He. ACS
Sustainable Chem. Eng. 2019, 7, 1574−1579.
thiosulfonates
reactions
via
three-component
coupling
of
phenyldiazonium
tetrafluoroborates/arylamines, DABSO, and thiols. A
series of unsymmetrical thiosulfonates were
conveniently obtained through a radical pathway with
excellent functional group tolerance. Notably, more
challenging linear alkyl thiols showed good reactivity,
affording the corresponding thiosulfonates in
moderate-to-good yields. This easy and simple
method provides a highly attractive approach for the
synthesis of various unsymmetrical thiosulfonates,
and it will broaden the strategies of sulfur dioxide
fixation in the field of organic chemistry.
Experimental Section
General procedure for synthesis of compounds 3a-u:
Under
nitrogen
atmosphere,
phenyldiazonium
tetrafluoroborates (0.6 mmol), DABSO (0.4 mmol),
thiols (0.4 mmol), were introduced to a 20 mL oven-
dried Schlenk tube. Then a solution of TFA (0.4 mmol),
DCE (2.4 mL) and toluene (0.6 mL) were introduced by
a injection syringe. The solution was stirred at 60C for
30 min under N2. After completion of the reaction, the
solvent was removed with the aid of a rotary evaporator.
The residue was purified by column chromatography on
silica gel using petroleum ether/ethyl acetate as eluent to
give the corresponding products.
[3] Selective reviews, see: a) J. Zhu, W.-C. Yang, X.-D.
Wang, L. Wu. Adv. Synth. Catal. 2018, 360, 386−400;
b) I. P. Beletskaya, V. P. Ananikov. Chem. Rev. 2011,
111, 1596–1636; c) F. Dénès, M. Pichowicz, G. Povie, P.
Renaud. Chem. Rev. 2014, 114, 2587–2693.
General procedure for synthesis of compounds 5a-i:
Under nitrogen atmosphere, Arylamines (0.6 mmol), t-
BuONO (0.6 mmol), DABSO (0.4 mmol), thiols (0.4
mmol), were introduced to a 20 mL oven-dried Schlenk
tube. Then a solution of TFA (0.4 mmol), DCE (2.4
mL) and toluene (0.6 mL) were introduced by a
injection syringe. The solution was stirred at 60 C for
30 min under N2. After completion of the reaction, the
solvent was removed with the aid of a rotary evaporator.
The residue was purified by column chromatography on
silica gel using petroleum ether/ethyl acetate as eluent to
give the corresponding products.
[4] a) S. E. Allen, R. R. Walvoord, R. Padilla-Salinas, M.
C. Kozlowski. Chem. Rev. 2013, 113, 6234−6458; b) D.
V. Partyka. Chem. Rev. 2011, 111, 1529−1595.
[5] a) J. P. Weidner, S. S. Block. J. Med. Chem. 1964, 7,
671−673; b) P. Natarajan. Tetrahedron Lett., 2015, 56,
4131−4134.
[6] Selected examples, see: a) B. M. Trost. Chem. Rev.
1978, 78, 363–382; b) V. Girijavallabhan, C. Alvarez, F.
G. Njoroge. J. Org. Chem. 2011, 76, 6442–6446; c) S.
Kim, S. Kim, N. Otsuka, I. Ryu. Angew. Chem., Int. Ed.,
2005, 44, 6183–6186.
Acknowledgements
This work was supported by the Natural Science
Foundation of Shandong Province (ZR2016JL012), and
the National Natural Science Foundation of China
(21302110). We thank Kexin Li and Guomeng Zhang in
this group for reproducing the results of 3a, 3n, 3h, 5e,
and 8b.
[7] a) E. Block and J. O' Connor. J. Am. Chem. Soc. 1974,
96, 3921−3929; b) K. Bahrami, M. M. Khodaei, D.
Khaledian. Tetrahedron Lett. 2012, 53, 354−358; c) N.
Iranpoor, H. Firouzabadi, A.-R. Pourali. Synlett. 2004,
15, 347–349; d) M. Cai, G. Lv, J. Chen, W. Gao, J. Ding,
H. Wu. Chem. Lett. 2010, 39, 368–369.
[8] Y. H. Kim, T. Takata, S. Oae. Tetrahedron Lett. 1978,
19, 2305–2308.
References
[1] Selective reviews, see: a) T. Kondo, T. Mitsudo.
Chem. Rev. 2000, 100, 3205−3220; b) A. Y. Sizov, A.
N. Kovregin, A. F. Ermolov. Russ. Chem. Rev. 2003,
72, 357−374; c) S. S. Mansy, J. A. Cowan. Acc. Chem.
Res., 2004, 37, 719−725; d) I. P. Beletskaya, V. P.
Ananikov. Chem. Rev. 2011, 111, 1596−1636; e) L.-Y.
[9] M. Xia, Z. C. Chen. Synth. Commun. 1997, 27, 1309–
1313.
[10] Y. Liu, Y. Zhang. Tetrahedron Lett. 2003, 44, 4291–
4294.
5
This article is protected by copyright. All rights reserved.