H. Görner / Journal of Photochemistry and Photobiology A: Chemistry 218 (2011) 199–203
203
References
-
I
H
H
+
hνCT
N CH3
[1] A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, G.B. Behera, Chem. Rev. 100
(2000) 1973.
R
N
CH3
R
R
•
-I•
+I •
[2] H. Görner, H.J. Kuhn, Adv. Photochem. 19 (1995) 1.
[3] H. Güsten, D. Schulte-Frohlinde, Z. Naturforsch. 34b (1979) 1556.
[4] H. Görner, D. Schulte-Frohlinde, Chem. Phys. Lett. 101 (1983) 79.
[5] H. Görner, D. Schulte-Frohlinde, J. Phys. Chem. 89 (1985) 4105.
[6] H. Görner, J. Phys. Chem. 89 (1985) 4112.
-
H
H
I
+
R
N
CH3
N
CH3
Ion pair
I
[7] H. Görner, A. Fojtik, J. Wróblewski, L.J. Currell, Z. Naturforsch. 40a
(1985) 525.
[8] (a) H. Görner, J. Phys. Chem. 91 (1987) 1187;
Scheme 2.
(b) H. Görner, Phys. Chem. Chem. Phys. 4 (2002) 482.
1∗(+AtI−) → (A• + I• )
3∗(+AtI−) → (A• +I• )
(4)
[9] H. Görner, H. Gruen, J. Photochem. 28 (1985) 329.
[10] H. Eberhardt, P. Fromherz, J. Phys. Chem. 93 (1989) 7717.
[11] M.J. Hinner, G. Hübener, P. Fromherz, J. Phys. Chem. B 108 (2004) 2445.
[12] B. Strehmel, H. Seifert, W. Rettig, J. Phys. Chem. B 101 (1997) 2232.
[13] M.S. Antonious, Spectrochim. Acta A 53 (1997) 317.
[14] A. Mishra, G.B. Behera, M.M.G. Krishna, N. Periasamy, J. Lumin. 92 (2001) 175.
[15] Z. Tian, Y. Chen, W. Ynag, J. Yao, L. Zhu, Z. Shuai, Angew. Chem. Int. Ed. 43 (2004)
4060.
[16] S. Amoroso, V.V. Agon, T. Starke-Peterkovic, M.D. McLeod, H.-J. Apell, P. Sebban,
R.J. Clarke, Photochem. Photobiol. 82 (2006) 495.
[17] S.J. Yamada, N. Uematsu, K. Yamashita, J. Am. Chem. Soc. 129 (2007) 12100.
[18] (a) A.L. Lusk, P.W. Bohn, Langmuir 16 (2000) 9131;
(b) S.A. El-Daly, M.H. Abdel-Kader, R.M. Issa, E.-S.A. El-Sherbini, Spectrochim.
Acta A 59 (2003) 405;
(c) J. Kabatc, B. Je˛drzejewska, P. Orlin´ ski, J. Pa˛czkowski, Spectrochim. Acta A 62
(2005) 115;
(d) T.H.N. Pham, R.J. Clarke, J. Phys. Chem. B 112 (2008) 6513;
(e) H. Yao, M. Yamashita, K. Kimura, Langmuir 25 (2009) 1131.
[19] U.E. Steiner, M.H. Abdel-Kader, P. Fischer, H.E.A. Kramer, J. Am. Chem. Soc. 100
(1978) 3190.
(6)
A• +I• → (+AtI−) + products
Electron transfer steps (4) or (5) take place for iodides due to the
low ionization potential, but not where perchlorates are present.
For a possible reduction product, see Schemes 1 and 2. The major
reaction is electron back transfer to the undamaged ion pair. The
transient absorption spectra of the trans-nitrostyryl salts reveal a
triplet state after the 308 or 353 nm pulse for iodides (P3, Q3) in
polar solvents and for the perchlorates (Pꢀ3, Qꢀ3) in any medium
examined. The longer lived transient of P3 or Q3 in THF is ascribed
to the nitrostyrylaromatic radical, i.e. electron transfer occurs also
from the triplet state [6].
trile by iodide has been investigated [32]. For benzoquinolizinium
radical, has been reported [33]. It should be recalled that pyri-
character in a given solvent [25–30]. Interestingly, the CT absorp-
tion of a pyrylium iodide has been introduced by Kosower as an
emperical solvent polarity parameter: Z-value [29]. This Z-value
is in good agreement proportional to the ETN-value of numerous
solvents [35,36].
[20] (a) S.A. El-Daly, M.H. Abdel-Kader, R.M. Issa, E.A. El-Sherbini, Spectrochim. Acta
A 59 (2003) 405;
(b) T. Kolev, B.B. Koleva, S. Stoyanov, M. Spiteller, I. Petkov, Spectrochim. Acta
A 70 (2008) 1087.
[21] S.T. Abdel-Halim, M.H. Abdel-Kader, U.E. Steiner, J. Phys. Chem. 92 (1988) 4324.
[22] (a) F.H. Quina, D.G. Whitten, J. Am. Chem. Soc. 99 (1977) 877;
(b) D.G. Whitten, J. Am. Chem. Soc. 108 (1986) 7865.
[23] (a) C. Chen, J. Photochem. Photobiol. A: Chem. 109 (1997) 155;
(b) C.-L. Zhan, D.-Y. Wang, J. Photochem. Photobiol. A: Chem. 147 (2002) 93;
(c) X. Deng, Z. Xiao-Hong, Chin. Phys. Lett. (2009) 077806.
[24] F. Ito, T. Nagamura, J. Photochem. Photobiol. C: Rev. 8 (2007) 174.
[25] (a) A.T. Balaban, M. Mocanu, Z. Simon, Tetrahedron 20 (1964) 119;
(b) J.W. Verhoeven, I.P. Dirkx, Th.J. De Boer, Tetrahedron 25 (1969) 3395;
(c) K. Kalyanasundaram, T. Colassis, R. Humphry-Baker, P. Savarino, E. Barni, E.
Pelizzetti, M. Grätzel, J. Am. Chem. Soc. 111 (1989) 3300;
(d) A.M. Moran, S. Park, N.F. Scherer, J. Phys. Chem. B 110 (2006) 19771.
[26] (a) G. Briegleb, W. Jung, W. Herre, Z. Phys. Chem. NF 38 (1963) 253;
(b) G. Briegleb, W. Herre, W. Jung, H. Schuster, Z. Phys. Chem. NF 45 (1965) 229.
[27] (a) F. Lehmann, G.J. Mohr, P. Czerney, U.-W. Grummt, Dyes Pigments 29 (1995)
85;
(b) U.-W. Grummt, E. Birckner, H. Lindauer, B. Beck, R. Rotomskis, J. Photochem.
Photobiol. A: Chem. 104 (1997) 69.
[28] S. Arai, M. Hida, T. Yamagishi, Dyes Pigments 29 (1995) 263.
[29] (a) E.M. Kosower, J. Am. Chem. Soc. 80 (1958) 3253;
(b) E.M. Kosower, Can. J. Chem. 83 (2005) 1207.
[30] G.G. Aloisi, F. Elisei, L. Latterini, Gazz. Chim. Ital. 124 (1994) 181.
[31] (a) E. Marri, U. Mazzucato, C.G. Fortuna, G. Masumarra, A. Spaletti, Photochem.
Photobiol. A: Chem. 179 (2006) 314;
5. Conclusions
The effects of solvents on the ground and excited singlet states
of trans-4-R-styrylpyridinium and complementary styrylquinolin-
ium iodides with R = OCH3, H, CN and NO2 were examined. The CT
absorption and fluorescence features are due to photoinduced elec-
tron transfer from iodide to the excited singlet state of the cation.
They are most pronounced in THF, where contact ion pairs are
present. The excited singlet state level depends on the reduction
potential. A major finding is that the quantum yield of CT fluores-
cence is relatively large: ˚f strongly enhanced upon excitation of
the CT band centered at 440–450 (or 300) nm with respect to that
of the hypsochromicly shifted main absorption band.
(b) C.G. Fortuna, U. Mazzucato, G. Musumarra, D. Pannacci, A. Spalletti, J. Pho-
tochem. Photobiol. A: Chem. 216 (2010) 66.
[32] M. Mac, J. Wirz, J. Najbar, Helv. Chim. Acta 76 (1993) 1319.
[33] T.W. Ebbesen, C.M. Previtali, T. Karatsu, T. Arai, K. Tokumaru, Chem. Phys. Lett.
119 (1985) 489.
[34] (a) Z.-X. Li, C.-H. Xu, W. Sun, Y.-C. Bai, C. Zhang, C.-J. Fang, C.-H. Yan, New J.
Chem. 33 (2009) 853;
Acknowledgments
(b) H.-H. Lin, C.-C. Cheng, Dyes Pigments 83 (2009) 230.
[35] C. Reichardt, Chem. Rev. 94 (1994) 2319.
[36] (a) C. Reichardt, Org. Proc. Res. Dev. 11 (2007) 105;
(b) C. Reichardt, Green Chem. 7 (2005) 339.
The author thanks Professor Wolfgang Lubitz for his support and
Mrs. Petra Höfer and Mr. Leslie J. Currell for technical assistance.