Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C8CC03556C
COMMUNICATION
Journal Name
11363; (e) A. M. Linsenmeier, C. M. William and S. Brase, J.
Org. Chem. 2011, 76, 9127 and references cited therein.
For selected references on metal-catalyzed the synthesis of
phenanthridine see (a) C. Zhang, T. Li, L. Wang and Y. Rao,
Org. Chem. Front. 2017, 4, 386; (b) J. Tang, P. Sivaguru, Y.
Ning, G. Zanoni and X. Bi, Org. Lett. 2017, 19, 4026; (c) K.
Singh, A. K. Singh, D. Singh, R. Singh and S. Sharma, Catal. Sci.
Technol. 2016, 6, 3723; (d) A. Borah and P. Gogoi, Eur. J.
Org. Chem. 2016, 2200; (e) W. Guo, S. Li, L. Tang, M. Li, L.
Wen and C. Chen, Org. Lett. 2015, 17, 1232; (f) L. Zhang, G.
Y. Ang and S. Chiba, Org. Lett, 2010, 12, 3682; (g) T. Gerfaud,
L. Neuville and J. Zhu, Angew. Chem., Int. Ed., 2009, 48, 572;
(h) D. A. Candito and M. Lautens, Angew. Chem. Int. Ed.
2009, 48, 6713 and references cited therein.
In summary, we have developed an efficient and
unprecedented route for the direct synthesis of valuable
phenanthridine derivatives from simple and readily available
starting materials. The overall reaction proceeds via palladium-
catalyzed nucleophilic addition reaction followed by cascade
formation of carbon-carbon (ortho-arylation) and carbon-
nitrogen bonds through sequential two fold C-H activation.
Some of the noteworthy features of the present study are: a)
use of commercial and nontoxic starting materials, b)
straightforward and practical reaction conditions, c) atom and
step economical, d) highly regioselective, d) cascade formation
of C-C/C-C and C-N bonds, e) broad substrate scope, and f)
gram scale synthesis. The developed synthetic methods hold
great potential and will stimulate further research in the
synthesis of diverse heterocycles.
7
8
(a) P. Natrajan, N. Kumar and M, Sharma, Org. Chem. Front.
2016, 3, 1265; (b) Z. Zhang, X. Tang and W. R. Dolbier Jr, Org.
Lett. 2015, 17, 4401; (c) H. Jiang, X. An, K. Tong, T. Zheng, Y.
Zhang and S. Yu, Angew. Chem. Int. Ed. 2015, 54, 4055; (d) L.
Gu, C. Jin, J. Liu, H. Dinga and B. Fana, Chem. Commun. 2014,
50, 4643; (e) T. Xiao, L. Li, G. Lin, Q. Wang, P. Zhang, Z.-W.
Mao and L. Zhou, Green Chem. 2014, 16, 2418; (f) H. Jiang, Y.
Cheng, R. Wang, M. Zheng, Y. Zhang and S. Yu, Angew.
Chem., Int. Ed. 2013, 52, 13289; (g) B. Zhang, C. Muck-
Lichtenfeld, C. G. Daniliuc and A. Studer, Angew. Chem. Int.
Ed. 2013, 52, 10792.
(a) H.-B. Zhao, Z.-J. Liu, J. Song and H.-C. Xu, Angew. Chem.
Int. Ed. 2017, 56, 12732; (b) M. Ramanathan and S.-T. Liu, J.
Org. Chem. 2015, 80, 5329; (c) J. Li, H. Wang, J. Sun, Y. Yangc
and L. Liu, Org. Biomol. Chem. 2014, 12, 7904; (d) I. Deb and
N. Yoshikai, Org. Lett. 2013, 15, 4254.
Authors
acknowledge
financial
support
by
CSIR
(02(0229)/15/EMR-II), New Delhi and Indian Institute of
Technology (IIT) Patna.
Conflicts of interest
9
The authors declare no conflict of interest.
Notes and references
1
(a) B. Zhang and A. Studer, Chem. Soc. Rev. 2015, 44, 3505;
(b) L.-M. Tumir, M. R. Stojkovic and I. Piantanidac, Beilstein J.
Org. Chem. 2014, 10, 2930; (c) A. V. Gulevich, A. S. Dudnik, N.
Chernyak and V. Gevorgyan, Chem. Rev. 2013, 113, 3084; (d)
G. Zeni, and R. C. Larock, Chem. Rev. 2006, 106, 4644.
10 (a) Y. Jaiswal, Y. Kumar and A. Kumar, J. Org. Chem. 2018,
83, 1223; (b) Y. Kumar, Y. Jaiswal, M. Shaw and A. Kumar,
Chem. Select. 2017, 2, 6143; (c) Y. Kumar, Y. Jaiswal and A.
Kumar, J. Org. Chem. 2016, 81, 12247; (d) Y. Kumar, M.
Shaw, R. Thakur and A. Kumar, J. Org. Chem. 2016, 81, 6617;
(e) Y. Jaiswal, Y. Kumar, R. Thakur, J. Pal, R. Subramanian
and A. Kumar, J. Org. Chem. 2016, 81, 12499.
2
(a) G. Saini, P. Kumar, G. S. Kumar, A. R. K. Mangadan, and
M. Kapur, Org. Lett. 2018, 20, 441; (b) P. Gandeepan and C.-
H. Cheng, Chem. Asian J. 2016, 11, 448; (c) Y. Hayashi, Chem.
Sci. 2016, 7, 866; (d) M. Gulías, and J. L. Mascareñas, Angew.
Chem. Int. Ed. 2016, 55, 11000; (e) Y. Segawa, T. Maekawa,
and K. Itami, Angew. Chem. Int. Ed. 2015, 54, 66.
11 (a) K. Hu, Q. Zhen, J. Gong, T. Cheng, L. Qi, Y. Shao, and
J.Chen, Org. Lett. 2018, 20, 3083; (b) M. Meng, L. Yang, K.
Cheng and C. Qi, J. Org. Chem. 2018, 83, 3275; (c) L. Qi, K.
Hu, S. Yu, J. Zhu, T. Cheng, X. Wang, J. Chen and H. Wu, Org.
Lett. 2017, 19, 218; (d) K. Hu, L. Qi, S. Yu, T. Cheng, X. Wang,
3
(a) T. Ishikawa, Med. Res. Rev, 2001, 21, 61; (b) T. Nakanishi,
and M. Suzuki, J. Nat. Prod. 1998, 61, 1263; (c) A. Cappelli,
M. Anzini, S. Vomero, L. Mannuni, F. Makovec, E. Doucet, M.
Hamon, G. Bruni, M. R. Romeo, M. C. Menziani, P. G.
Benedetti, and T. Langer, J. Med. Chem. 1998, 41, 728; (d) Y.
L. Janin, A. Croisy, J.-F. Riou, and E. Bisagni, J. Med. Chem.
1993, 36, 3686; (e) G. J. Atwell, B. C. Baguley, and W. A.
Denny, J. Med. Chem. 1988, 31, 774; (f) S. V. Kessar, Y. P.
Gupta, P. Balakrishnan, K. K. Sawal, T. Mohammad, and M.
Dutt, J. Org. Chem., 1988, 53, 1708.
Z. Li, Y. Xia, J. Chen and H. Wua, Green Chem., 2017, 19
1740; (e) S. Yu, L. Qi, K. Hu, J. Gong, T. Cheng, Q. Wang, J.
,
Chen, and H. Wu, J. Org. Chem. 2017, 82, 3631; (f) J-C. Hsieh,
,
Y-C. Chen, A-Y. Cheng, and H.-C. Tseng, Org. Lett. 2012, 14
1282.
12 (a) Y. Kumar, Y. Jaiswal and A. Kumar, Eur. J. Org. Chem.
2018, 494; (b) V. V. Kouznetsov and C. E. P. Galvis,
Tetrahedron 2018, 74, 773; (c) V. Y. Kukushkin and A. J. L.
Pombeiro, Chem. Rev. 2002, 102, 1771; (d) D. Wohrle and G.
Knothe, J. Polym. Sci. A. 1988, 26, 2435 and references cited
there in.
13 (a) A. A. Pletnev and R. C. Larock, J. Org. Chem. 2002, 67,
9428; (b) R. C. Larock, Q. Tian and A. A. Pletnev, J. Am. Chem.
Soc. 1999, 121, 3238.
14 (b) J.-C. Wan, J.-M. Huang, Y.-H. Jhan and J.-C. Hsieh, Org.
Lett. 2013, 15, 2742.
15 M. Nambo, M. Yar, J. D. Smith and C. M. Crudden, Org. Lett.
2015, 17, 50.
16 For further details see the supporting information.
17 (a) Y.-F. Chen and J.-C. Hsieh, Org. Lett. 2014, 16, 4642; (b) D.
Takeda, K. Hirano, T. Satoh and M. Miura, Heterocycles
2012, 86, 1; (c) J. Peng, T. Chen, C. Chen and B. Li, J. Org.
Chem. 2011, 76, 9507; (d) M. Blanchot, D. A. Candito, F.
Larnaud and M. Lautens, Org. Lett, 2011, 13, 1486. (e) D. L.
Davies, S. M. A. Donald, and S. A. Macgregor, J. Am. Chem.
Soc. 2005, 127, 13754.
4
(a) T. C. Johnstone, S. M. Alexander, W. Lin and S. J. Lippard,
J. Am. Chem. Soc. 2014, 136, 116; (b) K. K. Schrader, F.
Avolio, A. Andolfi, A. Cimmino and A. Evidente, J. Agric. Food.
Chem. 2013, 61, 1179; (c) O. B. Abdel-Halim, T. Morikawa, S.
Ando, H. Matsuda and M. Yoshikawa, J. Nat. Prod. 2004, 67
,
1119; (d) T. Ishikawa, Med. Res. Rev. 2001, 21, 61; (e) S. D.
Phillips and R. N. Castle, J. Heterocyclic. Chem. 1981, 18, 223.
(a) L. Sripada, J. A. Teske and A. Deiters, Org. Biomol. Chem.
2008, 6, 263; (b) G. T. Morgan and L. P. Walls, J. Chem. Soc.
1931, 2447; (c) A. Pictet and A. Hubert, Ber. Dtsch. Chem.
Ges, 1896, 29, 1182.
(a) C. J. Evoniuk, G. dos P. Gomes, S. P. Hill, S. Fujita, K.
Hanson and I. V. Alabugina, J. Am. Chem. Soc. 2017, 139,
16210; (b) C. Pan, H. Zhang, J. Han, Y. Cheng, and C. Zhu,
Chem. Commun. 2015, 51, 3786; (c) S. Lu, Y. Gong and D.
Zhou, J. Org. Chem. 2015, 80, 9336; (d) M. Tobisu, K. Koh, T.
Furukawa and N. Chatani, Angew. Chem., Int. Ed, 2012, 51,
5
6
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins