4
A. K. GUPTA ET AL.
[2] Che, C.-M.; Yip, H.-K.; Li, D.; Peng, S.-M.; Lee, G.-H.; Wang,
Y.-M.; Liu, S.-T. Metal–Metal Interaction in Polynuclear
Silver(I) Complexes: Spectroscopy, Luminescent Properties and
X-Ray Crystal Structure of [Ag3(Dppp)2(MeCN)2(ClO4)2]þ
[Dppp ¼ Bis(Diphenylphosphinophenylphosphine)]. J. Chem.
Soc. Chem. Commun. 1991, 1615–1617. DOI: 10.1039/
the third chloride atom bridging between the two arsenic
centers (As-Cl3 2.783(3) and 2.876(3) Å) giving a unique A-
shaped arrangement. The Cl3 chloride has long distances to
the nearest phosphonium centers (intramolecular: 3.272(3)
and intermolecular: 4.238(3) Å); however, it also displays a
weak C-HꢀꢀꢀCl interaction with one of the phenyl substitu-
ents (Cl3-H2 3.086 Å). The sums of the angles around both
arsenic centers (excluding the As-Cl3 contacts) are 293.0
and 290.8ꢁ, resulting in a rather peculiar bonding situation.
Moreover, the As-As single bond distance (2.4763(15) Å) is
relatively long compared to previously reported diarsanes
(2.40-2.45 Å[20]) but significantly shorter than in the steric-
ally encumbered dimer of the latent and stable arsinyl rad-
ical (TMS2CH)2Asꢀ (2.587 Å).[21] A related five membered
heterocycle - a dihalo-diarsa-cyclopentane derivative - has
previously been reported as a halogenation product of As3-
nortricyclane.[22] Similar to our observations, a complex
equilibrium of products was observed under these experi-
mental conditions.
ꢀ
[3] Bardajı, M.; Laguna, A.; Orera, V. M.; Villacampa, M. D.
Synthesis, Structural Characterization, and Luminescence
Studies of Gold(I) and Gold(III) Complexes with
a
Triphosphine Ligand. Inorg. Chem. 1998, 37, 5125–5130. DOI:
[4] Tanase, T.; Hamaguchi, M.; Ara Begum, R.; Yano, S.;
Yamamoto, Y. Unprecedented Nitrosyl-Bridged double-A-
Frame Triplatinum Complexes, [Pt3(m-Triphosphine)2(m-
NO)2(RNC)2](BF4)4. Chem. Commun. 1999, 745–746. DOI: 10.
[5] Tanase, T.; Begum, R. A.; Toda, H.; Yamamoto, Y. Linearly
Ordered Pt2Rh and Pt2Ir Heterotrinuclear Complexes Bridged
by Tridentate Phosphine Ligands. Organometallics 2001, 20,
[6] Tong, G. S. M.; Kui, S. C. F.; Chao, H.-Y.; Zhu, N.; Che, C.-M.
3
ꢂ
The [ndr (nþ1)pr] emissions of linear silver(I) and gold(I)
The structure solution of the DCM solvate gives very simi-
lar metrics to the phosphonium salt, however the packing
motifs differ significantly. While the DCM solvate leads to a
shifted face-to-face arrangement of the A-motif (Figure 5a)
the solvent free structure shows the A-motifs in a side-on
packing motif (Figure 5b).
chains with bridging phosphine ligands . Chemistry 2009, 15,
ꢀ
[7] Fleischmann, M.; Du€tsch, L.; Elsayed Moussa, M.; Balazs, G.;
Kremer, W.; Lescop, C.; Scheer, M. Self-Assembly of Reactive
Linear Cu3 Building Blocks for Supramolecular Coordination
Chemistry and Their Reactivity toward En Ligand Complexes.
[8] Fleischmann, M.; Dutsch, L.; Moussa, M. E.; Schindler, A.;
Balazs, G.; Lescop, C.; Scheer, M. Organometallic
Polyphosphorus and -Arsenic Ligands as Linkers between Pre-
Assembled Linear CuI Fragments. Chem. Commun. 2015, 51,
[9] Balch, A. L.; Olmstead, M. M.; Oram, D. E.; Reedy, P. E.;
Reimer, S. H. Complexation of Tin(II) by the Iridium
Metallomacrocycle Ir2(CO)2Cl2(l-Ph2PCH2As(Ph)CH2PPh2)2. A
Novel Receptor and Sensor of Tin(II). J. Am. Chem. Soc. 1989,
[10] Balch, A. L.; Nagle, J. K.; Oram, D. E.; Reedy, P. E. Oxidative
Additions and Luminescence Involving Iridium-Gold-Iridium
Chains Formed by Binding of Gold(I) to the Metallamacrocycle
Ir2Cl2(CO)2[l-Ph2PCH2As(Ph)CH2PPh2]2. J. Am. Chem. Soc.
Conclusions
The simple TMS-Cl elimination in the reaction of chloro-
phosphanes with silyl-substituted methylene phosphanes
contrasts the complex behavior for chloro arsanes (Ph-AsCl2
and AsCl3). The mixed pnictogen ligand bis(diphenylphos-
phinomethyl) phenylarsane was crystallographically charac-
terized. The observed reactivities indicate that migratory and
redox reactions are responsible for the complexity of this
allegedly simple condensation reaction ultimately giving the
unexpected 1,3,4-phosphadiarsolan-1-ium salt, with an A
shaped As2Cl3 motif.
[11] England, K. R.; Lim, S. H.; Luong, L. M. C.; Olmstead, M. M.;
Balch, A. L. Vapoluminescent Behavior and the Single-Crystal-
to-Single-Crystal Transformations of Chloroform Solvates of
[Au2(l-1,2-Bis(Diphenylarsino)Ethane)2](AsF6)2. Chem. Eur. J.
[12] Gupta, A. K.; Akkarasamiyo, S.; Orthaber, A. Rich
Coordination Chemistry of p-Acceptor Dibenzoarsole Ligands.
[13] Green, J. P.; Gupta, A. K.; Orthaber, A. Effect of Arsenic
Coordination State on the Structure, Aromaticity, and Optical
Properties of Dithieno[3,2-b:20,30-d]Arsoles. Eur. J. Inorg. Chem.
[14] Pfeifer, G.; Papke, M.; Frost, D.; Sklorz, J. A. W.; Habicht, M.;
Mu€ller, C. Clicking the Arsenic–Carbon Triple Bond: An Entry
into a New Class of Arsenic Heterocycles. Angew. Chem. Int.
[15] Ishidoshiro, M.; Matsumura, Y.; Imoto, H.; Irie, Y.; Kato, T.;
Watase, S.; Matsukawa, K.; Inagi, S.; Tomita, I.; Naka, K.
Practical Synthesis and Properties of 2,5-Diarylarsoles. Org.
[16] Ma, M.; Yu, Z.; Zhu, L.; Pullarkat, S. A.; Leung, P.-H.
Palladium-Promoted Asymmetric Cycloaddition Reaction of
Arsole via an Unusual Exo-Endo Stereochemically Controlled
Experimental
Experiments are carried out under inert conditions unless
stated otherwise. NMR data are recorded on a JEOL EXC
operating at a proton frequency of 400 MHz. X-ray crystal-
lography: All the measurements were performed using
graphite-monochromatized MoKa radiation at 150 K using a
Bruker D8 APEX-II equipped with a CCD camera. The
structure was solved by direct methods (SHELXS) and
refined by full-matrix least-squares techniques against
23
F2 (SHELXL).[ ]
References
[1] Li, D.; Yip, H.-K.; Che, C.-M.; Zhou, Z.-Y.; Mak, T. C. W.; Liu,
S.-T. Photoredox Properties of Luminescent Trinuclear
Copper(I) Complexes with a Bridging Phosphine Ligand and
Crystal
Structure
of
[Cu3(Dpmp)2(MeCN)2(m-
Cl)2]ClO4[Dpmp ¼ Bis(Diphenylphosphinomethyl)Phenylphosp-
hine]. J. Chem. Soc. Dalton Trans. 1992, 2445–2449. DOI: 10.