X. Qian et al. / Tetrahedron Letters 43 (2002) 2995–2998
2997
Figure 1. The photocleavage to DNA by B4. (a) The photocleavage of DNA under irradiation with light at 366 nm. Lane 1: DNA
alone (no hw); Lane 2: DNA and B4 at concentrations of 50 mM; Lane 3: DNA and B4 at concentrations of 20 mM; Lane 4: DNA
alone (hw, 75 min). (b) Effect of concentrations on the photocleavage of DNA under the irradiation of light at 450 nm. Lane 1: DNA
alone (no hw); Lane 2–7: DNA and B4 at concentrations of 50, 20, 10, 5, 1 and 0.5 mM, respectively; Lane 8: DNA alone (hw,
75 min). (c) Effect of irradiation time on the photocleavage of DNA under the irradiation of light at 450 nm. Lane 1: DNA alone
(no hw); Lane 2: B4 and DNA (hw, 30 min); Lane 3: B4 and DNA (hw, 60 min); Lane 4: B4 and DNA (hw, 75 min); Lane 5: B4
and DNA (hw, 90 min); Lane 6: DNA alone (hw, 90 min). (d) Effect of pH of the aqueous buffer on the photocleavage of DNA at
450 nm. Lanes 1, 3, 5, 7: DNA and B4 at 50 mM, buffer pH 8.5, 8.0, 7.5, 7.0, respectively; Lanes 2, 4, 6, 8: DNA alone, buffer
pH 8.5, 8.0, 7.5, 7.0, respectively; hv, 75 min.
In conclusion, the above study on benzothioxanthene
dicarboximide hydroperoxide B4 probably provides the
first example of an organic hydroperoxide, which has
‘time-resolved’ photocleavage properties on DNA and
demonstrated photocleavage under irradiation with vis-
ible light (450 nm). And it also provided a novel
example of naphthyl radical-induced intramolecular
aromatic hydrogen transfer during Pschorr cyclization
in the preparation of B4.
Jpn. 1999, 72, 1571–1574; (e) Qian, X.; Huang, T.; Wei,
D.; Zhu, D.; Fan, M.; Yao, W. J. Chem. Soc., Perkin
Trans. 2 2000, 715–718.
10. Sarker, A. K.; Tabata, M.; Wasaaki, K. Anal. Sci. 1997,
13, 509–512.
11. Kumar, C. V.; Tan, W. B.; Bett, P. W. J. Inorg. Biochem.
1997, 68, 177–181.
12. Chatterjee, S. R.; Srivastava, T. S.; Kamat, J. P.;
Devasagayam, T. P. A. J. Porphyrins Phthalocyanins
1998, 2, 337–343.
13. (a) Theodorakis, E. A.; Wilcoxen, K. M. Chem. Commun.
1996, 1927–1928; (b) Blom, P.; Xiang, A. X.; Kao, D.;
Theodorakis, E. A. Bioorg. Med. Chem. 1999, 7, 727–736;
(c) Qian, X.; Yao, W.; Chen, G.; Huang, X.; Mao, P.
Tetrahedron Lett. 2001, 42, 6175.
14. Wei, Y.; Qian, X.; Hu, Q. Tetrahedron Lett. 2000, 41,
7711.
15. (a) Peters, A. T.; Bide, M. J. Dyes Pigments 1985, 6, 267;
(b) Peters, A. T.; Bide, M. J. Dyes Pigments 1985, 6, 417.
16. Grayshan, P. H.; Kashim, A. M.; Peters, A. T. J. Hetero-
cycl. Chem. 1974, 11, 33.
Acknowledgements
This work was financially supported by the Fuk Ying
Tung Foundation, The Ministry of Education of China,
National Natural Science Foundation of China and
Shanghai Foundation of Science and Technology.
References
17. Karady, S.; Abramson, N. L.; Dolling, U. H.; Douglas,
A. W.; McManemin, G. J.; Marcune, B. J. Am. Chem.
Soc. 1995, 117, 5425.
1. Satio, I.; Nakatani, K. Bull. Chem. Soc. Jpn. 1996, 69,
3007.
2. Saito, I.; Takayama, M.; Sugiyama, H.; Nakamura, T. In
DNA and RNA Cleavers and Chemotherapy of Cancer and
Viral Diseases; Menunier, B., Ed.; Kluwer: Netherlands,
1996; pp. 163–176.
3. Breslin, D. T.; Coury, J. E.; Anderson, J. R.; McFail-
Isom, L.; Kan, Y.; Williams, L. D.; Bottomley, L. A.;
Schuster, G. B. J. Am. Chem. Soc. 1997, 119, 5043.
4. Sigman, D.; Mazumder, A.; Perrin, D. M. Chem. Rev.
1993, 93, 2295.
5. Ogata, Y.; Tomizawa, K.; Furuta, K. In The Chemistry
of Peroxides; Patai, S., Ed.; Wiley: New York, 1983; p.
711.
6. Matsugo, S.; Saito, I. Tetrahedron Lett. 1991, 25, 2949–
2950.
7. Armitage, B. Chem. Rev. 1998, 98, 1171–1200.
8. Mehroto, J.; Mishra, R. K. Nucleosides Nucleotides 1994,
13, 963.
9. (a) Tao, Z.; Qian, X.; Wei, D. Dyes Pigments 1996, 31,
245; (b) Tao, Z.; Qian, X. Dyes Pigments 1999, 43,
139–145; (c) Yao, W.; Qian, X. Dyes Pigments 2000, 106,
69–72; (d) Tao, Z.; Qian, X.; Fan, M. Bull. Chem. Soc.
18. Qian, X.; Cui, J.; Zhang, R. Chem. Commun. 2001,
2656–2657.
19. (a) Hess, K. M.; Dix, T. A. Anal. Biochem. 1992, 206,
309; (b) Boivin, J.; Crepon, E.; Zard, S. Z. Bull. Soc.
Chim. Fr. 1992, 129, 145; (c) Nocentini, G.; Castagnino,
E.; Salvatori, A.; Corsano, S.; Fioretti, M. C. Arzneim.-
Forsch./Drug Res. 1995, 10, 1127.
20. Compound A2: yellow solid, mp 284–286°C, lH (DMSO-
d6, 300 MHz): l 9.4 (s, 1H, 7-H), 8.75 (m, 2H, 3-H, 1-H),
8.59 (dd, J1=1.0 Hz, J2=7.4 Hz, 1H, 11-H), 8.28 (m, 1H,
2-H), 8.04 (dd, J1=8.2 Hz, J2=7.4 Hz, 1H, 8-H), 7.68
(m, 2H, 9-H, 10-H); EI MS (m/z, %): 306 ([M+2]+, 11.4),
304 (M+, 100). Compound B2: orange solid, mp >300°C,
lH (DMSO-d6, 300 MHz): l 8.55 (m, 3H, 2-H, 6-H, 7-H),
8.36 (d, J=8.0 Hz, 1H, 2-H), 7.83 (d, J=8.1 Hz, 1H,
9-H), 7.56–7.70 (m, 3H, 10-H, 11-H, 12-H); EI MS (m/z,
%): 306 ([M+2]+, 8.7), 304 (M+, 100). Compound B3: lH
(500 MHz, CDCl3): l 1.74 (s, 3H, 3%-CH3), 1.77 (s, 3H,
3%-CH3), 4.73 (d, J=7.5Hz, 2H, ꢀNCH2ꢀ), 5.35 (t, J1=
J2=7.5 Hz, 1H, 2%-H), 7.39 (m, 3H, 10-12H), 7.49 (d,
J=8.0 Hz, 1H, 9-H), 8.20 (m, 2H, 1-H, 7-H), 8.42 (d,