Scheme 1. Retrosynthesis
enyne/ring closing metathesis (RCM)12 and synthesis of
an AB ring of taxol13 and a taxa-oxa-sugar hybrid,14 using
a tandem enyne/IMDA reaction, we realized that it was
logical to use a tandem enyne/RCM15 to synthesize the
4-methylene-2-cyclohexenone moiety present in otteliones
and loloanolides. This strategy, if successful, could pave
the way to synthesize several simpler analogues of these
interesting natural products, in addition to their total
synthesis. It is also worth mentioning that the RCM
approach involving the triene intermediate of type 79 has
been utilized for the synthesis of otteliones and the present
approach will be using acetylene as a 2-butadienyl equiva-
lent. To check the feasibility of this approach, we initially
designed a few sugar-derived 4-methylene-2-cyclohexe-
nones 6, where a broad diversity could be introduced at
the sugar moiety. As per the retrosynthesis delineated in
Scheme 1, the proposed target scaffold 6 could be derived
from enyne 8 through a domino cross enyne metathesis
with ethylene followed by RCM and oxidation. Further,
enyne 8 could, in turn, be derived from D-glucose in a few
steps.
Figure 1. Otteliones A 2 and B 3, loloanolide B 4, and 1-O-
acetylloloanolide B 5.
stereochemistry of these molecules.7a Later, the same
group reported an enantioselective total synthesis and,
thus, determined the absolute configurations as well.7b
Since then, three more total syntheses8,9 and a few formal10
as well as partial syntheses11 for otteliones have been
reported.
Inspired by the biological and structural importance of
these molecules from the preliminary reports, we became
interested in the synthesis of these natural products.
Though our main goal has been to accomplish total
syntheses of these interesting natural products, our initial
goal was to develop an efficient approach to the construc-
tion of the more sensitive 4-methylene-2-cyclohexenone
framework. From our earlier reports on the synthesis
of angularly fused dioxatriquinanes involving tandem
Thus, our synthesis began with the stereoselective addi-
tion of lithium acetylide to the ketone 916 to afford tertiary
alcohol 10 (Scheme 2).17 Methylation of this tertiary
alcohol 10 with methyl iodide under basic conditions
afforded ether 11a in 96% yield. Selective removal of the
more exposed acetonide was carried out smoothly under
mild acidic conditions at room temperature to afford
(7) (a) Mehta, G.; Islam, K. Angew. Chem., Int. Ed. 2002, 41, 2396–
2398. (b) Mehta, G.; Islam, K. Tetrahedron Lett. 2003, 44, 6733–6736.
(8) (a) Mehta, G.; Islam, K. Org. Lett. 2002, 4, 2881–2884. (b) Araki,
H.; Inoue, M.; Katoh, T. Org. Lett. 2003, 5, 3903–3906. (c) Araki, H.;
Inoue, M.; Suzuki, T.; Yamori, T.; Kohno, M.; Watanabe, K.; Abe, H.;
Katoh, T. Chem.;Eur. J. 2007, 13, 9866–9881. (d) Chen, C. H.; Chen,
Y. K.; Sha, C. K. Org. Lett. 2010, 12, 1377–1379.
(12) Kaliappan, K. P.; Nandurdikar, R. S. Chem. Commun. 2004,
2506–2507.
(13) Kaliappan, K. P.; Ravikumar, V.; Pujari, S. A. Tetrahedron Lett.
2006, 47, 981–984.
(14) Nandurdikar, R. S.; Subrahmanyam, A. V.; Kaliappan, K. P.
(9) (a) Clive, D. L. J.; Liu, D. Angew. Chem., Int. Ed. 2007, 46, 3738–
3740. (b) Clive, D. L. J.; Liu, D. J. Org. Chem. 2008, 73, 3078–3087.
(10) For formal synthesis of otteliones, see: (a) Suzuki, T.; Ghozati,
K.; Katoh, T.; Sasai, H. Org. Lett. 2009, 11, 4286–4288. (b) Suzuki, T.;
Ghozati, K.; Zhou, D. Y.; Katoh, T.; Sasai, H. Tetrahedron 2010, 66,
7562–7568. (c) Lee, M. Y.; Kim, K. H.; Jiang, S.; Jung, Y. H.; Sim, J. Y.;
Hwang, G. S.; Ryu, D. H. Tetrahedron Lett. 2008, 49, 1965–1967.
(11) For partial synthesis of otteliones, see: (a) Mehta, G.; Reddy,
D. S. Chem. Commun. 1999, 2193–2194. (b) Trembleau, L.; Patiny, L.;
Ghosez, L. Tetrahedron Lett. 2000, 41, 6377–6381. (c) Mehta, G.; Islam,
K. Synlett 2000, 1473–1475. (d) Clive, D. L. J.; Fletcher, S. P. Chem.
Commun. 2002, 1940–1941. (e) Araki, H.; Inoue, M.; Katoh, T. Synlett
2003, 2401–2403. (f) Clive, D. L. J.; Liu, D. Tetrahedron Lett. 2005, 46,
5305–5307.
Eur. J. Org. Chem. 2010, 2788–2799.
(15) (a) Layton, M. E.; Morales, C. A.; Shair, M. D. J. Am. Chem.
Soc. 2002, 124, 773–775. (b) Hansen, E. C.; Lee, D. J. Am. Chem. Soc.
2003, 125, 9582–9583. (c) Hansen, E. C.; Lee, D. J. Am. Chem. Soc. 2004,
126, 15074–15080. For recent reviews on an enyne metathesis based
tandem process, see: (d) Lopez, J. C.; Plumet, J. Eur. J. Org. Chem. 2011,
1803–1825. (e) Li, J.; Lee, D. Eur. J. Org. Chem. 2011, 4269–4287.
(16) Czernecki, S.; Georgoulis, C.; Stevens, C. L.; Vijayakumaran, K.
Tetrahedron Lett. 1985, 26, 1699–1702.
(17) Brimacombe, J. S.; Rollins, A. J.; Thompson, S. W. Carbohydr.
Res. 1973, 31, 108–113.
Org. Lett., Vol. 14, No. 1, 2012
199