Inorganic Chemistry
Article
OCH(CH3)2), 1.33, 1.26, 1.14, 0.82, 0.78 (d, 36H, J = 5.8 Hz,
OCH(CH3)2). 13C NMR (CDCl3, 50 MHz): δ 219.76 (CN), 165.72,
147.83, 134.61, 133.49, 129.13, 127.40, 123.05, 122.57, 119.73, 110.46
(Ar), 78.60, 78.25, 74.89 (OCH(CH3)2), 25.82, 25.46, 25.28, 24.47,
23.52 (OCH(CH3)2). Anal. Calcd (found) for C40H56N2O8Ti2: C, 60.92
(60.45); H, 7.16 (7.44); N, 3.55 (3.82) %. Mp = 110 °C.
added to a mixture of complex LH-TiOPr6 (0.068 g, 0.1 mmol) and
LA (1.44 g, 10 mmol) at 60 °C. After the solution was stirred for 50 min,
the reaction was then quenched by adding to a drop of ethanol, and
the polymer was precipitated pouring into n-hexane (70.0 mL) to give
white solids. The white solid was dissolved in CH2Cl2 (5.0 mL) and
then n-hexane (70.0 mL) was added to give white crystalline solid.
Yield: 1.08 g (75%).
Synthesis of LCH3-TiOPr6. Using a method similar to that for
LH-TiOiPr6 expect LCH3-H was used in place of LH-H. Yield: 2.90 g
(81%). 1H NMR (CDCl3, 200 MHz): δ 7.33 (2H, t, J = 8 Hz, Ar-H),
7.29 (2H, d, J = 8 Hz, Ar-H), 6.83 (2H, d, J = 8 Hz, Ar-H), 6.74 (2H, t,
J = 8 Hz, Ar-H), 5.00, 4.77, 4.52 (sept, 6H, J = 6.0 Hz, OCH(CH3)2),
2.15 (6H, s, CH3CN) 1.38, 1.30, 1.20, 1.17, 0.92 (d, 12H, J = 6.0 Hz,
OCH(CH3)2). 13C NMR (CDCl3, 50 MHz): δ 162.92 (CN),
161.77, 132.21, 128.52, 124.14, 119.63, 116.64 (Ar), 78.75, 77.29, 74.04
(OCH(CH3)2), 26.18, 26.08, 25.41, 25.10, 24.23, (OCH(CH3)2),
23.57 (CH3CN). Anal. Calcd (found) for C34H56N2O8Ti2: C, 56.99
(56.60); H, 7.88 (7.72); N, 3.91 (3.63) %. Mp = 113 °C.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the ACS
■
S
Polymer characterization data, and details of the kinetic
Synthesis of LCH3-Ti2O(OPr)2. 0.12 g of LCH3-Ti(OPr)6 was
dissolved in CDCl3 (1.0 mL) in NMR tube. After 2 weeks, only the
residual yellow powder was observed in the NMR tube. The crystal of
AUTHOR INFORMATION
Corresponding Author
+886-7-3121101-2585, Fax: +886-7-3125339.
■
L
CH3-Ti2O(OPr)2 was observed from the residual yellow powder.
Synthesis of LBr‑CH3-TiOPr6. Using a method similar to that for
LH-TiOiPr6 expect LBr‑CH3-H was used in place of LH-H. Yield: 2.93 g
(67%). H NMR (CDCl3, 200 MHz): δ 7.40 (2H, s, Ar-H), 7.34,
Notes
1
The authors declare no competing financial interest.
6.71 (2H, d, J = 8 Hz, Ar-H), 4.97, 4.73, 4.51 (sept, 6H, J = 6.0 Hz,
OCH(CH3)2), 2.11 (6H, s, CH3CN) 1.36, 1.28, 1.17, 1.14, 0.95, 0.92
(d, 12H, J = 6.0 Hz, OCH(CH3)2). 13C NMR (CDCl3, 50 MHz):
δ 162.01 (CN), 160.70, 134.94, 130.86, 125.40, 121.61, 107.74 (Ar),
79.21, 77.61, 74.12 (OCH(CH3)2), 26.19, 25.30, 25.01, 24.11, 23.43,
(OCH(CH3)2), 18.41 (CH3CN). Anal. Calcd (found) for
C34H54Br2N2O8Ti2: C, 46.71 (46.39); H, 6.23 (6.47); N, 3.20 (3.19)
%. Mp = 192 °C.
ACKNOWLEDGMENTS
■
This study is supported by Kaohsiung Medical University “Aim
for the top 500 universities grant” under Grant No. KMU-
DT103007, NSYSU-KMU JOINT RESEARCH PROJECT
(#NSYSUKMU 104-P006), and the Ministry of Science and
Technology (Grant MOST 104-2113-M-037-010 and 104-2815-
C-037-033-M). We thank Center for Research Resources and
Development at Kaohsiung Medical University for the
instrumentation and equipment support.
Synthesis of LPh-TiOPr6. Using a method similar to that for
LH-TiOiPr6 expect LPh-H was used in place of LH-H. Yield: 2.90 g
1
(81%). H NMR (CDCl3, 200 MHz): δ 7.38−7.34 (4H, m, Ar-H),
7.29−7.16 (8H, m, Ar-H), 6.93 (2H, t, J = 8 Hz, Ar-H), 6.76 (2H, d, J =
8 Hz, Ar-H), 6.49 (2H, t, J = 8 Hz, Ar-H), 5.05, 4.76, 4.48 (sept, 6H, J =
6.0 Hz, OCH(CH3)2), 1.42, 1.36, 1.26, 1.17, 0.90 (d, 12H, J = 6.0 Hz,
OCH(CH3)2). 13C NMR (CDCl3, 50 MHz): δ 162.92 (CN),
161.77, 132.21, 128.52, 124.14, 119.63, 116.64 (Ar), 78.75, 77.29,
74.04 (OCH(CH3)2), 26.18, 26.08, 25.41, 25.10, 24.23, (OCH(CH3)2),
23.57 (CH3CN). Anal. Calcd (found) for C44H60N2O8Ti2: C, 62.86
(63.10); H, 7.19 (7.52); N, 3.33 (3.93) %. Mp = 121 °C.
REFERENCES
■
(1) (a) Patel, D.; Moon, J. Y.; Chang, Y.; Kim, T. J.; Lee, G. H. Colloids
Surf., A 2008, 313−314, 91−94. (b) Sun, Y.-L.; Chen, Y.-Z.; Wu, R.-J.;
Chavali, M.; Huang, Y.-C.; Su, P.-G.; Lin, C.-C Sens. Actuators, B 2007,
126, 441−446. (c) Raquez, J.-M.; Habibi, Y.; Murariu, M.; Dubois, P.
Prog. Polym. Sci. 2013, 38, 1504−1542. (d) Lih, E.; Oh, S. H.; Joung, Y.
K.; Leed, J. H.; Han, D. K. Prog. Polym. Sci. 2015, 44, 28−61. (e) Ma, W.-
J.; Yuan, X.-B.; Kang, C.-S.; Su, T.; Yuan, X.-Y.; Pu, P.-Y.; Sheng, J.
Carbohydr. Polym. 2008, 72, 75−81. (f) Khemtong, C.; Kessinger, C. W.;
Gao, J. Chem. Commun. 2009, 3497−3510. (g) Simpson, R. L.; Wiria, F.
E.; Amis, A. A.; Chua, C. K.; Leong, K. F.; Hansen, U. N.;
Chandrasekaran, M.; Lee, M. W. J. Biomed. Mater. Res., Part B 2008,
84B, 17−25. (h) Place, E. S.; George, J. H.; Williams, C. K.; Stevens, M.
M. Chem. Soc. Rev. 2009, 38, 1139−1151. (i) Armentano, I.; Bitinis, N.;
Fortunati, E.; Mattioli, S.; Rescignano, N.; Verdejo, R.; Lopez-
Manchado, M. A.; Kenny, J. M. Prog. Polym. Sci. 2013, 38, 1720−
Synthesis of LCl−H-TiOPr2. A mixture of LCl−H-H (2.59 g, 10 mmol)
and Ti(OiPr)4 (2.843 g, 10 mmol) in THF (30 mL), was stirred for
1 day. Volatile materials were removed under vacuum to give yellow oil
and then it was washed with hexane (50 mL). The product precipitated
1
as a yellow powder which was filtered. Yield: 1.64 g (48%). H NMR
(CDCl3, 200 MHz): δ 8.88, 8.08 (4H, s, CHN), 7.35, 7.25 (8H, d,
J = 10 Hz, Ar-H), 7.12, 6.27 (4H, d, J = 8 Hz, Ar-H), 6.90, 6.61 (4H, t,
J = 6 Hz, Ar-H), 4.94 (sept, 2H, J = 6.0 Hz, OCH(CH3)2), 1.24 (d, 12 H,
J = 6.0 Hz, OCH(CH3)2). 13C NMR (CDCl3, 50 MHz): δ 163.37,
161.45 (CN), 160.59, 136.70, 134.09, 133.66, 132.85, 129.32,
128.63, 120.97, 118.94,, 118.12 (Ar), 78.98 (OCH(CH3)2), 25.60
(OCH(CH3)2). Anal. Calcd (found) for C34H34Cl2N4O4Ti: C, 59.93
(59.54); H, 5.03 (5.08); N, 8.22 (8.72) %. Mp = 148 °C.
́
1747. (j) Thire, R. M. S. M.; Meiga, T. O.; Dick, S.; Andrade, L. R.
Macromol. Symp. 2007, 258, 38−44. (k) Skotak, M.; Leonov, A. P.;
Larsen, G.; Noriega, S.; Subramanian, A. Biomacromolecules 2008, 9,
1902−1908. (l) Slomkowski, S. Macromol. Symp. 2007, 253, 47−58.
(m) Lickorish, D.; Guan, L.; Davies, J. E. Biomaterials 2007, 28, 1495−
1502. (n) Djordjevic, I.; Britcher, L. G.; Kumar, S. Appl. Surf. Sci. 2008,
254, 1929−1935. (o) Wu, W.; Wang, W.; Li, J. Prog. Polym. Sci. 2015, 46,
55−85. (p) Ikada, Y.; Tsuji, H. Macromol. Rapid Commun. 2000, 21,
117−132. (r) Sarpietro, M. G.; Pitarresi, G.; Ottimo, S.; Giuffrida, M. C.;
Ognibene, M. C.; Fiorica, C.; Giammona, G.; Castelli, F. Mol.
Pharmaceutics 2011, 8, 642−650. (s) Jones, C. H.; Chen, C.-K.; Chen,
M.; Ravikrishnan, A.; Zhang, H.; Gollakota, A.; Chung, T.; Cheng, C.;
Pfeifer, B. A. Mol. Pharmaceutics 2015, 12, 846−856.
Synthesis of ((LCl−H)3Ti3O3). A mixture of LCl−H-TiOPr2 (0.53 g,
1.0 mmol) and H2O (0.18 g, 10 mmol) in THF (30 mL), was stirred for
1 day. Volatile materials were removed under vacuum to give deep
yellow oil and then it was washed with hexane (50 mL). The product
1
precipitated as a yellow powder which was filtered. The H NMR
spectrum of the yellow powder revealed there were lots of impurities
inside and could not further be purified. 0.10 g of the yellow powder was
dissolved in CDCl3 (1.0 mL) in NMR tube. After one month, only the
residual yellow powder was observed in the NMR tube. The crystal of
((LCl−H)3Ti3O3) was observed from the residual yellow powder.
General Polymerization Procedures. A typical polymerization
procedure was exemplified by the synthesis of entry 1 (Table 1) using
complex LH-TiOPr6 as a catalyst. The polymerization conversion
was analyzed by 1H NMR spectroscopic studies. Toluene (5.0 mL) was
(2) (a) Majerska, K.; Duda, A. J. Am. Chem. Soc. 2004, 126, 1026−1027.
(b) Sutar, A. K.; Maharana, T.; Dutta, S.; Chen, C.-T.; Lin, C.-C. Chem.
Soc. Rev. 2010, 39, 1724−1746. (c) Chisholm, M. H.; Eilerts, N. W.;
Huffman, J. C.; Iyer, S. S.; Pacold, M.; Phomphrai, K. J. Am. Chem. Soc.
H
Inorg. Chem. XXXX, XXX, XXX−XXX