COMMUNICATIONS
Acta 1996, 79, 1475 ± 1487; d) A. J. Bloodworth, A. Shah, Tetrahedron
Lett. 1995, 36, 7551 ± 7554; e) R. K. Haynes, S. C. Vonwiller, Tetrahe-
dron Lett. 1996, 37, 253 ± 256; f) R. K. Haynes, S. C. Vonwiller,
Tetrahedron Lett. 1996, 37, 257 ± 260.
which undoubtedly show that a s bond is present between the
sulfur and C-4 in 11 (and therefore 10).
The significance of the concatenation of QHS and cysteine
observed in this simple chemical model system lies in the
precise mechanistic basis it may offer at the molecular level
for the radical-mediated alkylation of, for example, pro-
teins[5a, 7b, 8] (especially in the absence of heme iron). Such a
basis has been missing in all documented investigations in
spite of its evident indispensability. To date, only addition of
QHS to the porphyrin in a substantially simplified heme
model has been elucidated,[7a] which unfortunately cannot
explain how QHS can possibly be irreversibly connected to
any of the biomolecules reported in the literature for a radical
reaction associated with cleavage induced by an FeII ion.
Sulfur± iron bonds (or more generally S M bonds, where M
is a transition metal with low-lying redox states suitable for
cleaving peroxides) similar to that studied in this work are
known to exist in many enzymes and functional proteins. The
potential structural difference between S Fe bonds in malaria
parasites and those in host cells might be responsible for the
extraordinarily high selective cytotoxicity of QHS. By pre-
senting the first model for the irreversible denaturing/
disabling of the redox center in these speciesÐwhich are
liable to be overlooked in, for example, radioactive isotope
labeling studies because of their low abundanceÐthe present
work may prompt further investigations into this so far largely
overlooked dimension of non-heme proteins. Furthermore,
the results along this line might practically reestablish our
understanding of the parasiticidal action of QHS.
[6] A. F. G. Slater, A. Cerami, Nature 1992, 355, 167 ± 169.
[7] a) A. Robert, B. Meunier, J. Am. Chem. Soc. 1997, 119, 5968 ± 5969;
b) S. Bharel, R. A. Vishwakarma, S. K. Jain, J. Chem. Soc. Perkin
Trans. 1 1998, 2163 ± 2166.
[8] a) W. Asawamahasakda, I. Ittarat, Y.-M. Pu, H. Ziffer, S. R. Meshnick,
Antimicrob. Agents Chemother. 1994, 38, 1854 ± 1858; b) Y.-Z. Yang,
B. Little, S. R. Meshnick, Biochem. Pharmacol. 1994, 48, 569 ± 573;
c) Y.-Z. Yang, W. Asawahasakda, S. R. Meshnick, Biochem. Pharma-
col. 1993, 46, 336 ± 339.
[9] Physical and spectroscopic data for 5 (1H and 13C NMR signals
assigned based on the DQF-COSY and HMQC spectra): M.p. 45.5 ±
46.58C; [a]9D 54.5 (c 1.0 in CHCl3); 1H NMR (600 MHz, CDCl3):
d 10.10 (s, 1H), 2.68 (quint., 1H, J 8.0 Hz; H-9), 2.41 (m, 1H;
H-8a), 2.07 (m, 1H; H-6), 2.04 (m, 1H; H-7), 1.84 (dq, J 3.4, 13.0 Hz,
1H; H-8b), 1.68 (brd, J 13.2 Hz, 1H; H-8a), 1.63 (m, 1H; H-5), 1.52
(m, 1H; H-5a), 1.35 (m, 1H; H-5), 1.33 (m, 1H; H-7), 1.03 (d, J
6.4 Hz, 3H; Me at C-6), 1.02 (d, J 6.5 Hz, 3H; Me at C-9), 0.99 (t,
J 7.3 Hz, 3H, H-4); 13C NMR (150 MHz, CDCl3): d 204.09 (C-12),
179.17 (C-10), 91,73 (C-12a), 53.96 (C-5a), 52.84 (C-8a), 37.56 (C-9),
35.31 (C-7), 33.68 (C-6), 22.19 (C-5), 20.65 (C-8), 20.22 (Me at C-6),
13.34 (C-4), 11.42 (Me at C-9); IR (film): nÄ 1795, 1735 cm 1; MS m/z
(%): 225 ([M1] , 56.3), 207 (58.3), 195 (100), 179 (12.7), 167 (0.4),
151 (17.3), 121 (81.3), 97 (29), 83 (91), 69 (65), 55 (91), 43 (18);
elemental analysis calcd for C13H20O3: C 69.60, H 8.99; found: C 69.68,
H 9.14.
[10] A. R. Butler, B. C. Gilbert, P. Hulme, L. Irvine, L. Renton, A. C.
Whitwood, Free Radicals Res. 1998, 28, 471 ± 476.
[11] P. J. Rosenthal, S. R. Meshnick, Mol. Biochem. Parasitol. 1996, 83,
131 ± 139
[12] H. Atamna, H. Ginsburg, Eur. J. Biochem. 1997, 250, 670 ± 679.
[13] See for example a) A. C. Beekman, H. J. Woerdenbag, W. van Uden,
N. Pras, A. W. T. Konings, H. V. Wikstrom, J. Pharm. Pharmacol. 1997,
49, 1254 ± 1258; b) Q. Y. Zheng, L. G. Darbie (Hauser Chemical
Research), WO-A 9701548 A1, 1997 [Chem. Abstr. 1997, 126, 157663];
c) H. C.-Y. Lai, N. P. Singh (University of Washington), WO-
A 9634602 A1, 1996 [Chem. Abstr. 1997, 126, 26821]; d) S. O. Duke,
F. E. Dayan, A. Hernandez, M. V. Duke, H. K. Abbas, Brighton Crop
Prot. Conf. Weeds 1997, 2, 579 ± 586 [Chem. Abstr. 1998, 128, 98854];
e) M. Jung, R. F. Schinazi, Bioorg. Med. Chem. Lett. 1994, 4, 931 ± 4;
f) R. L. Berens, E. C. Krug, P. B. Nash, T. J. Curiel, J. Infect. Dis. 1998,
177, 1128 ± 1131.
Received: April 6, 1999
Revised version: May 12, 1999 [Z13239IE]
German version: Angew. Chem. 1999, 111, 2730 ± 2733
Keywords: alkylations ´ antimalarial agents ´ chelates ´
S ligands ´ radicals
[14] Physical and spectroscopic data for 11 (1H and 13C NMR signals
assigned based on the DQF-COSY and HMQC spectra): M.p. 148.5 ±
[1] F. H. Collins, S. M. Pasewitz, Annu. Rev. Entomol. 1995, 40, 195 ± 219.
[2] a) S. R. Meshnick, A. Thomas, A. Ranz, C. M. Xu, H. P. Pan, Mol.
Biochem. Parasitol. 1991, 49, 181 ± 190; b) S. R. Meshnick, Y.-Z. Yang,
V. Lima, F. Kuypers, S. Kamchonwongpaisan, Y. Yuthavong, Anti-
microb. Agents Chemother. 1993, 37, 1108 ± 1114; c) J. Bhisutthibhan,
X.-Q. Pan, P. A. Hossler, D. J. Walker, C. A. Yowell, J. Carlton, J. B.
Dame, S. R. Meshnick, J. Biol. Chem. 1998, 273, 16192 ± 16198.
[3] a) W.-M. Wu, Z.-J. Yao, Y.-L. Wu, K. Jiang, Y.-F. Wang, H.-B. Chen, F.
Shan, Y. Li, Chem. Commun. 1996, 2213 ± 2214; b) W.-M. Wu, Y.-K.
Wu, Y.-L. Wu, Z.-J. Yao, C.-M. Zhou, Y. Li, F. Shan, J. Am. Chem. Soc.
1998, 120, 3316 ± 3325.
[4] a) G. H. Posner, C. H. Oh, J. Am. Chem. Soc. 1992, 114, 8328 ± 8329;
b) G. H. Posner, C. H. Oh, D.-S. Wang, L. Gerena, W. K. Milhous, S.
Meshnick, W. Asawamahasadka, J. Med. Chem. 1994, 37, 1256 ± 1258;
c) G. H. Posner, J. N. Cumming, P. Ploypradith, C. H. Oh, J. Am.
Chem. Soc. 1995, 117, 5885 ± 5886; d) G. H. Posner, S. B. Park, L.
Gonzalez, D.-S. Wang, J. N. Cumming, D. Klinedinst, T. A. Shapiro,
M. D. Balci, J. Am. Chem. Soc. 1996, 118, 3537 ± 3538; e) J. N.
Cumming, P. Ploypradith, G. H. Posner, Adv. Pharmacol. 1997, 37,
253 ± 297; f) G. H. Posner, M. H. Parker, J. Northrop, F. S. Elias, P.
Ploypradith, S. Xie, T. A. Shapiro J. Med. Chem. 1999, 42, 300 ± 304.
[5] a) M. A. Avery, P. C. Fan, J. M. Karle, J. D. Bonk, R. Miller, D. K.
Goins, J. Med. Chem. 1996, 39, 1885 ± 1897; b) C. W. Jefford, F.
Favarger, M. G. H. Vicente, Y. Jacruier, Helv. Chim. Acta 1995, 78,
452 ± 458; c) C. W. Jefford, M. G. H. Vicente, Y. Jacquier, F. Favarger,
J. Mareda, P. Millason-Schmidt, G. Brunner, U. Burger, Helv. Chim.
149.58C; [a]9D
64.9 (c 0.53 in CHCl3); 1H NMR (CDCl3): d
5.95 (s, 1H; H-12), 3.46 (dq, J 1.2, 7.2 Hz, 1H; H-9), 2.84 (dt, J 3.0,
14 Hz, 1H; H-4a), 2.39 (dt, J 14, 3.0 Hz, 1H; H-4b), 2.12 (tt, J 15,
4.2 Hz, 1H; H-5b), 2.02 (m, 1H; H-5a), 2.00 (m, 1H; H-8a), 1.92 (m,
1H; H-7b), 1.89 (m, 1H; H-8a), 1.73 (m, 1H; H-6), 1.47 (dt, J 12,
2.4 Hz, 1H; H-5a), 1.24 (m, 1H; H-8b), 1.19 (t, J 6.6 Hz, 3H; Me at
C-9), 1.12 (dq, J 3, 13 Hz, 1H; 7a), 0.91 (d, J 6.0 Hz, 3H; Me at
C-6); 13H NMR (CDCl3): d 172.33 (C-10), 80.60 (C-12), 67.76 (C-
12a), 50.58 (C-5a), 44.70 (C-8a), 35.27 (C-9), 34.38 (C-7), 29.91 (C-6),
24.15 (C-4), 23.74 (C-8), 23.62 (C-5), 20.08 (Me at C-9), 12.78 (Me at
C-6); IR (KBr): nÄ 3501, 1735 cm 1; MS m/z (%) 256 (M , 35), 238
(100); HR-MS calcd for C13H20O3S: 256.1133; found: 256.1132.
2582
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3817-2582 $ 17.50+.50/0
Angew. Chem. Int. Ed. 1999, 38, No. 17