Journal of the American Chemical Society
Article
Scheme 2
Spectral data and synthesis for complexes 1-H2−3-Cl2
and additional crystallographic data (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors thank Dr. Jeffery A. Bertke for assisting with
crystallography and the NSF for financial support with a
CAREER award (1351961) to A.R.F. C.R.M. has been
supported in part by an NSF award (CHE 12-13811) and a
NASA award (NNX13AE62G) to PI Prof. Benjamin J. McCall.
We also thank Prof. McCall for the use of the p-H2 generator.
REFERENCES
■
(1) In Organotransition Metal Chemistry: From Bonding to Reactivity;
Hartwig, J. F., Ed.; University Science Books: Sausalito, CA, 2010.
(2) In Handbook of Homogenous Hydrogenation; de Vries, J. G.,
Elsevier, C. J., Eds. Wiley-VCH: New York, 2007.
(3) Knijnenburg, Q.; Horton, A. D.; Heijden, H. V. D.; Kooistra, T.
M.; Hetterscheid, D. G. H.; Smits, J. M. M.; Bruin, B.; Budzelaar, P. H.
M.; Gal, A. W. J. Mol. Catal. A: Chem. 2005, 232, 151−159.
(4) Friedfeld, M. R.; Shevlin, M.; Margulieux, G. W.; Campeau, L.-C.;
Chirik, P. J. J. Am. Chem. Soc. 2016, 138, 3314−3324.
(5) Chirik, P. J. Acc. Chem. Res. 2015, 48, 1687−1695.
(6) Jing, Y.; Chen, X.; Yang, X. Organometallics 2015, 34, 5716−
5722.
cobalt center does occur. Following I-2 formation, migratory
insertion generates a dihydrogen hydride, I-3. Detection of
partially deuterated substrates is indicative of β-hydride
elimination from I-3 to generate I-2, accompanied by
dissociation of H2. The observation of HD and H2 in
deuterium studies strongly suggests that HD exchange occurs
via complexes I-3 and I-4, and further establishes that β-hydride
elimination must be operative. Lastly, 1-H2 is regenerated by
reductive elimination of the alkane product and recoordination
of PPh3 to the cobalt complex.
(7) Zhang, G.; Vasudevan, K. V.; Scott, B. L.; Hanson, S. K. J. Am.
Chem. Soc. 2013, 135, 8668−8681.
(8) Zhang, G.; Scott, B. L.; Hanson, S. K. Angew. Chem., Int. Ed.
2012, 51, 12102−12106.
(9) Lin, T.-P.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 13672−
13683.
(10) Lin, T.-P.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 15310−
1531.
(11) Friedfeld, M. R.; Margulieux, G. W.; Schaefer, B. A.; Chirik, P. J.
CONCLUSION
■
In summary, a “Kubas-type” cobalt dihydrogen complex
supported by a monoanionic bis(carbene) ligand platform
was prepared and characterized in solution using multinuclear
NMR studies. In the course of our studies, it was determined
that CoI-(N2) precursors 1-N2 and 2-N2 exchange N2 for H2
and are able to facilitate the scrambling of H2 and D2.
Stoichiometric examples of oxidative addition and reductive
elimination with the CCC ligand platform demonstrate the
viability of CoI/CoIII redox couples in such scrambling
processes and support the formation of a CoIII-(H)2
intermediates. Furthermore, 1-N2 is competent toward the
hydrogenation of olefins in the presence of hydrogen gas. A
number of studies suggest the dihydrogen complex, 1-H2, is the
J. Am. Chem. Soc. 2014, 136, 13178−13181.
(12) Ingleson, M.; Fan, H.; Pink, M.; Tomaszewski, J.; Caulton, K. J.
Am. Chem. Soc. 2006, 128, 1804−1805.
(13) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004,
126, 13794−13807.
(14) Lee, Y.; Kinney, A. R.; Hoffman, B. M.; Peters, J. C. J. Am. Chem.
Soc. 2011, 133, 16366−16369.
(15) Fong, H.; Peters, J. C. Inorg. Chem. 2015, 54, 5124−5135.
(16) Liu, T.; Wang, X.; Hoffmann, C.; DuBois, D. L.; Bullock, R. M.
Angew. Chem., Int. Ed. 2014, 53, 5300−5304.
(17) He, T.; Tsvetkov, N. P.; Andino, J. G.; Gao, X.; Fullmer, B. C.;
Caulton, K. G. J. Am. Chem. Soc. 2010, 132, 910−911.
(18) Tsay, C.; Peters, J. C. Chem. Sci. 2012, 3, 1313−1318.
(19) Connelly, S. J.; Zimmerman, A. C.; Kaminsky, W.; Heinekey, M.
D. Chem. - Eur. J. 2012, 18, 15932−15934.
1
2
resting state of the active catalyst. Finally, the use of H, H,
and PHIP NMR studies has enabled the identification of key
reaction intermediates and established the role of the cobalt(I)
dihydrogen complex, 1-H2, in the catalytic hydrogenation of
olefins.
(20) Harman, W. H.; Lin, T.-P.; Peters, J. C. Angew. Chem., Int. Ed.
2014, 53, 1081−1086.
(21) Crabtree, R. H. Chem. Rev. 2016, 116, 8750−8769.
(22) Kubas, G. J. Catal. Lett. 2005, 104, 79−101.
(23) Torrent, M.; Sola, M.; Frenking, G. Chem. Rev. 2000, 100, 439−
493.
(24) Esteruelas, M. A.; Oro, L. A. Chem. Rev. 1998, 98, 577−588.
(25) Suess, D. L. M.; Tsay, C.; Peters, J. C. J. Am. Chem. Soc. 2012,
134, 14158−14164.
(26) Hebden, T. J.; St. John, A. J.; Gusev, D. G.; Kaminsky, W.;
Goldberg, K. I.; Heinekey, D. M. Angew. Chem. 2011, 123, 1913−
1916.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Crystallographic details for 2-N2, 3-HCl, and 3-Cl2
F
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX