Figure 1. Correlation between the calculated activation energy of the Bergman cyclization and the product of natural charges at the
terminal acetylenic atoms of benzannelated enediynes. Only para substituents obey the correlation.
substituents lie within a range of only 0.6 kcal/mol (Table
1). A larger decrease in the activation energy for a positively
charged substituent (NH3 ) demonstrates the predominant
products of natural atomic charges18,19 at the acetylenic
carbons with the activation energy (Figure 1).
+
However, the influence of ortho substituents on the
activation energy is not limited to the field effect, as indicated
by large deviations from the above correlation (Table 1 and
Figure 1). As a result the accessible range of activation
energies is much larger, from 27.7 to 32.3 kcal/mol. At 37
°C, all other factors being equal, it corresponds to an almost
2000-fold change in the reaction rate!18 This difference is
especially remarkable since the electronic effects of ortho
and para substituents are often considered similar.12
Further insight into the role of ortho substituents is
provided from the difference in absolute energies between
ortho- and para-substituted enediynes (δER) as well as their
cyclized TSs (δETS) given in Table 1. Positive values of δER
and δETS are indicative of steric repulsion and lower
stabilities of the ortho compounds compared to those of the
corresponding para compounds. Negative values of δER and
δETS indicate that ortho isomer is more stable as a result of
stabilizing interactions of the substituent with the enediyne
moiety. It is important to note here that only difference
between δER and δETS and not the sign of the δEs determines
the effect of the substituent on the cyclization rate.
role of the field effect.
The field effect of electronegative substituents decreases
electron density at the terminal acetylenic atoms thus
alleviating the electron repulsion. We found that this simple
rationale is supported by an excellent correlation of the
(13) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,
I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M.
W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon,
M.; Replogle, E. S.; Pople, J. A. Gaussian 98; Gaussian, Inc.: Pittsburgh,
PA, 1998.
(14) The size of the systems precluded the use of accurate but
computationally expensive multiconfigurational methods. (a) Nicolaides,
A.; Borden, W. T. J. Am. Chem. Soc. 1993, 115, 11951. (b) Lindh, R.;
Lee, T. J.; Bernhardsson, A.; Persson, B. J.; Karlstro¨m, G. J. Am. Chem.
Soc. 1995, 117, 7186. (c) Kraka, E.; Cremer, D.; Bucher, G.; Wandel, H.;
Sander, W. Chem. Phys. Lett. 1997, 268, 313. (d) McMahon, R. J.; Halter,
R. J.; Fimmen, R. L.; Wilson, R. J.; Peebles, S. A.; Kuczkowski, R. L.;
Stanton, J. F. J. Am. Chem. Soc. 2000, 122, 939. (e) Cramer, C. J.; Nash,
J. J.; Squires, R. R. Chem. Phys. Lett. 1997, 277, 311. Cramer, C. J.; Squires,
R. R. J. Phys. Chem. A 1997, 101, 9191.
(15) UB3LYP/6-31G** slightly overestimates the reaction barrier and
underestimates the endothermicity (see Supporting Information). However,
this accuracy is acceptable since we are considering relatiVe trends in
reactivity.
(16) (a) Kraka, E.; Cremer, D. J. Am. Chem. Soc. 2000, 122, 8245. (b)
Gra¨fentein, J.; Hjerpe, A. M.; Kraka, E.; Cremer, D. J. Phys. Chem. 2000,
122, 8245. (c) Jones, G. B.; Warner, P. M. J. Am. Chem. Soc. 2001, 123,
2134. (d) Feldgus, S.; Shields, G. C. Chem. Phys. Lett. 2001, 347, 505.
(17) BLYP is another DFT method commonly used for theoretical studies
on the Bergman cyclization: Prall, M.; Wittkopp, A.; Fokin, A. A.;
Schreiner, P. R. J. Comput. Chem. 2001, 22, 1605. Prall, M.; Wittkopp,
A.; Schreiner, P. R. J. Phys. Chem. 2001, 105, 9265. (See Supporting
Information.)
Sterically compact ortho substituents such as Me, OH, anti-
OMe, F, Cl, and CN destabilize the ground and transition
states to a similar degree. As a result, changes in the
activation energy are minor. The net effect of these substit-
uents on the cyclization rate is similar to that of the para
substituents, and the corresponding computational data fit
well into the correlation in Figure 1.
(18) The product of atomic charges is proportional to the electrostatic
repulsion between the atoms (with constant interatomic distance).
(19) Weinhold, F.; Natural Bond Orbital Methods. In Encyclopedia of
Computational Chemistry; Schleyer, P.v. R., Ed.; Wiley: New York, 1998;
Vol. 3, p 1792.
Org. Lett., Vol. 4, No. 7, 2002
1121