Journal of the American Chemical Society
COMMUNICATION
were observed with a trans-disubstituted vinylboronic acid (entry
27). Lower temperature provided slight increases in optical purity.
The more hindered α-substituted vinylboronic acid gave good ee
with electron-deficient α-keto esters (entries 30 and 31) but lower
ee with more electron-rich α-keto esters (entries 32 and 33).
Several conclusions can be drawn from these studies. First,
substantial steric bulk around the allene appears to be necessary
to ensure chemical and stereochemical integrity. Even though
transition metals can racemize allenes,12 bisphosphine 5 retains
its optical activity in the presence of Rh(I), Ag(I), and even
cationic Au(I). Thus, it appears that significant opportunities for
catalysis exist.
’ REFERENCES
(1) Rouhi, A. M. Chem. Eng. News 2004, 82 (24), 47 .
(2) Farina, V.; Reeves, J. T.; Senanayake, C. H.; Song, J. J. Chem. Rev.
2006, 106, 2734.
(3) Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer-Verlag: Berlin, 1999.
(4) Examples of ligand development: (a) Cyclopropanation: Pellissier,
H. Tetrahedron 2008, 64, 7041. (b) Hydrogenation: Tang, W.; Zhang, X.
Chem. Rev. 2003, 103, 3029. (c) Addition to aldehydes: Binder, C. M.;
Singaram, B. Org. Prep. Proced. Int. 2011, 43, 139.
(5) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346.
(6) Fu, Y.; Xie, J.-H.; Hu, A.-G.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L.
Chem. Commun. 2002, 480.
Second, all of the solid-state structures we obtained contain a
π-stacking interaction between two aryl rings on opposite
termini of the allene. This interaction does not require CF3
groups because we previously observed it in the crystal structure
of 1, which lacks CF3 groups.9 We speculate that this character-
istic may provide rigidity around the large coordination sphere
and may be beneficial to asymmetric induction.
(7) Sato, I.; Matsueda, Y.; Kadowaki, K.; Yonekubo, S.; Shibata, T.;
Soai, K. Helv. Chim. Acta 2002, 85, 3383.
(8) L€ohr, S.; Averbeck, J.; Sch€urmann, M.; Krause, N. Eur. J. Inorg.
Chem. 2008, 552.
(9) Pu, X.; Qi, X.; Ready, J. M. J. Am. Chem. Soc. 2009, 131, 10364.
(10) (a) Al: Claesson, A.; Olsson, L. I. J. Am. Chem. Soc. 1979,
101, 7302. (b) RLi and RMgCl: Satoh, T.; Kuramochi, Y.; Inoue, Y.
Tetrahedron Lett. 1999, 40, 8815.
Third, we observed an interaction between Rh or Pt and the
allene itself. In the case of Pt, this interaction is sufficiently
activating that in the presence of a second phosphine, elimina-
tion of HCl destroys the allene and forms a CÀPt bond.
However, in the case of Rh, the interaction may be important
for both catalysis and asymmetric induction. It is noteworthy
that in the solid state, coordination only to the less hindered
olefin (methyl-substituted) was observed. Furthermore, a com-
parison between monophosphines 11 and 12 is intriguing.
Ligand 11 should allow coordination to the less hindered olefin,
and the Rh complex derived from this ligand was very active
(Table 1, entry 4). In contrast, ligand 12 contains a more
hindered olefin proximal to the phosphine, and the correspond-
ing complex was much less active (Table 1, entry 5). Finally,
coordination to the allene in bisphosphine 5 may encourage the
formation of a trans-chelating complex. Consequently, the Rh
center is buried within a deep chiral cavity. Only a limited
number of trans-chelating bisphosphines have been developed
for asymmetric catalysis,29 so additional members of this class
should be valuable. The utility of these ligands is sure to be
expanded by continued developments in ligand design and the
exploration of additional chemical reactions.
(11) (a) Zr: Pu, X.; Ready, J. M. J. Am. Chem. Soc. 2008, 130, 10874.
(b) Cu: Lipshutz, B. H.; Sengupta, S. In Organic Reactions; Wiley: West Sussex,
U.K., 2004. (c) Pd: Yoshida, M.; Gotou, T.; Ihara, M. Tetrahedron Lett. 2004,
45, 5573. (d) Au: Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978.
(e) Fe: Li, C.-Y.; Wang, X.-B.; Sun, X.-L.; Tang, Y.; Xu, Z.-H.; Zhou, Y.-G.; Dai,
L.-X. J. Am. Chem. Soc. 2007, 129, 1494. (f) Zn: Varghese, J. P.; Zouev, I.;
Aufauvre, L.; Knochel, P.; Marek, I. Eur. J. Org. Chem. 2002, 4151. (g) Cr:
Molander, G. A.; Sommers, E. M. Tetrahedron Lett. 2005, 46, 2345. (h) Ti:
Buchwald, S. L.; Grubbs, R. H. J. Am. Chem. Soc. 1983, 105, 5490. (h)
Schlossarczyk, H.; Sieber, W.; Hesse, M.;Hansen, H.-J.;Schmid, H.Helv. Chim.
Acta 1973, 56, 875.
(12) (a) Molander, G. A.; Sommers, E. M.; Baker, S. R. J. Org. Chem.
2006, 71, 1563. (b) Zhang, Z.; Bender, C. F.; Widenhoefer, R. A. J. Am.
Chem. Soc. 2007, 129, 14148. (c) Gandon, V.; Lemiꢀere, G.; Hours, A.;
Fensterbank, L.; Malacria, M. Angew. Chem., Int. Ed. 2008, 47, 7534.
(13) Antczak, M. I.; Cai, F.; Ready, J. M. Org. Lett. 2011, 13, 184.
(14) Barder, T. E.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 5096.
(15) Lithiation did not cause racemization.
(16) See the Supporting Information for details.
(17) The catalyst derived from Rh(CH2dCH2)2(acac) and 10
catalyzed the reaction in Table 2, entry 4 in 68% yield with 81% ee
after 15 h at 40 °C.
(18) Duan, W.-L.; Iwamura, H.; Shintani, R.; Hayashi, T. J. Am.
Chem. Soc. 2007, 129, 2130.
(19) Brown, T. J.; Sugie, A.; Dickens, M. G.; Widenhoefer, R. A.
Organometallics 2010, 29, 4207.
(20) Castro-Rodrigo, R.; Esteruelas, M. A.; Lopez, A. M.; Mozo, S.;
Onate, E. Organometallics 2010, 29, 4071.
’ ASSOCIATED CONTENT
S
(21) Sentets, S.; Serres, R.; Ortin, Y.; Lugan, N.; Lavigne, G.
Organometallics 2008, 27, 2078.
(22) Lee, L.; Wu, I.-Y.; Lin, Y.-C.; Lee, G.-H.; Wang, Y. Organome-
tallics 1994, 13, 2521.
Supporting Information. Experimental details, charac-
b
terization data, and crystal structure files. This material is
(23) O’Connor, J. M.; Chen, M.-C.; Fong, B. S.; Wenzel, A.; Gantzel,
P.; Rheingold, A. L.; Guzei, I. A. J. Am. Chem. Soc. 1998, 120, 1100.
(24) Doherty, S.; Elsegood, M. R. J.; Clegg, W.; Mampe, D.; Rees,
N. H. Organometallics 1996, 15, 5302.
’ AUTHOR INFORMATION
Corresponding Author
(25) Zhang, H.; Lin, R.; Hong, G.; Wang, T.; Wen, T. B.; Xia, H.
Chem.—Eur. J. 2010, 16, 6999.
(26) Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. 1998,
37, 3279.
(27) Duan, H.-F.; Xie, J.-H.; Qiao, X.-C.; Wang, L.-X.; Zhou, Q.-L.
Angew. Chem., Int. Ed. 2008, 47, 4351.
(28) B€urgi, J. J.; Mariz, R.; Gatti, M.; Drinkel, E.; Luan, X.; Blumentritt,
S.; Linden, A.; Dorta, R. Angew. Chem., Int. Ed. 2009, 48, 2768.
(29) Freixa, Z.; van Leeuwen, P. W. N. M. Coord. Chem. Rev. 2008,
252, 1755.
’ ACKNOWLEDGMENT
Funding was provided by NIH (GM074822), NSF (CAREER),
and the Welch Foundation (I1612). Johnson-Matthey generously
provided Rh salts. Molecular images were produced using the UCSF
Chimera package from the University of California, San Francisco
(NIH P41 RR001081).
18069
dx.doi.org/10.1021/ja207748r |J. Am. Chem. Soc. 2011, 133, 18066–18069