Organic Letters
Letter
improve biological activities.12 Consequently, a series of
transformations of compound 2a were carried out (Scheme
4). In the presence of NH3/CH3OH, adenine nucleoside 5a
Accession Codes
CCDC 1866376 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
Scheme 4. Product 2a Elaboration
AUTHOR INFORMATION
■
Corresponding Authors
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful for the financial support from the National
Natural Science Foundation of China (Nos. 21672055,
21602045, and U1604283) and the 111 Project (No.
D17007).
REFERENCES
■
(1) (a) Bergmeier, S. C. Tetrahedron 2000, 56, 2561−2576.
(b) Segat-Dioury, F.; Lingibe, O.; Graffe, B.; Sacquet, M.-C.;
Lhommet, G. Tetrahedron 2000, 56, 233−248.
was synthesized with 70% yield and 96% ee. Treatment of 2a
with DAST (diethylaminosulfurtrifluoride) resulted in 2′-F-
modified carbocyclic nucleoside 6a in 71% yield and 98% ee.
Mesylation of 2′-OH of substrate 2a resulted in a complete
conversion with excellent retention of ee (7a, 97% yield, 98%
ee). A sulfur atom was introduced into the carbocycle of 7a
through nucleophilic substitution using AcSK, and the chiral
thionucleoside derivative 8a was obtained in 76% yield and
98% ee. The N3 group was also subsequently introduced into
7a using NaN3, and the 2′-N3-modified nucleoside 9a was
obtained with 87% yield and 97% ee. Furthermore, a click
reaction of the enantioenriched 9a and phenylacetylene was
conducted in the presence of Cu(OAc)2, and the 2′-triazole-
modified nucleoside 10a was obtained in 92% yield and 98%
ee. Finally, 9a was also efficiently reduced to afford primary
amine 11a in 86% yield and 97% ee.
In summary, we have successfully developed the asymmetric
transfer hydrogenation via dynamic kinetic resolution of rac-α-
(purin-9-yl)cyclopentones. Various optically active cis-β-
(purin-9-yl)cyclopentols were obtained with excellent yields
and ee’s. The purine base was found to possibly coordinate the
ruthenium (Ru) center of the catalyst to facilitate its reactivity
and stereoinduction. This reaction can provide an efficient
synthetic route for a variety of chiral carbocyclic nucleosides
analogues.
́
(2) Selected examples: (a) Liu, S.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-
L. Angew. Chem. 2007, 119, 7650−7652; Angew. Chem., Int. Ed. 2007,
46, 7506−7508. (b) Liu, S.; Xie, J.-H.; Li, W.; Kong, W.-L.; Wang, L.-
X.; Zhou, Q.-L. Org. Lett. 2009, 11, 4994−4997. (c) Hu, Q.; Chen, J.;
Zhang, Z.; Liu, Y.; Zhang, W. Org. Lett. 2016, 18, 1290−1293.
̈
(d) Seashore-Ludlow, B.; Villo, P.; Hacker, C.; Somfai, P. Org. Lett.
2010, 12, 5274−5277. (e) Horiguchi, K.; Yamamoto, E.; Saito, K.;
Yamanaka, M.; Akiyama, T. Chem. - Eur. J. 2016, 22, 8078−8083.
(f) Yang, X.-H.; Yue, H.-T.; Yu, N.; Li, Y.-P.; Xie, J.-H.; Zhou, Q.-L.
Chem. Sci. 2017, 8, 1811−1814. (g) Wu, W.; You, C.; Yin, C.; Liu, Y.;
Dong, X.-Q.; Zhang, X. Org. Lett. 2017, 19, 2548−2551. (h) Liu, G.;
Han, Z.; Dong, X.-Q.; Zhang, X. Org. Lett. 2018, 20, 5636−5639.
(3) Selected examples: (a) Steward, K. M.; Corbett, M. T.;
Goodman, C. G.; Johnson, J. S. J. Am. Chem. Soc. 2012, 134,
20197−20206. (b) Corbett, M. T.; Johnson, J. S. J. Am. Chem. Soc.
2013, 135, 594−597. (c) Cheng, T.; Ye, Q.; Zhao, Q.; Liu, G. Org.
Lett. 2015, 17, 4972−4975. (d) Wang, D.; Astruc, D. Chem. Rev.
2015, 115, 6621−6686. (e) Vyas, V. K.; Bhanage, B. M. Org. Lett.
2016, 18, 6436−6439. (f) Zheng, L.-S.; Phansavath, P.;
Ratovelomanana-Vidal, V. Org. Chem. Front. 2018, 5, 1366−1370.
(g) Cotman, A. E.; Modec, B.; Mohar, B. Org. Lett. 2018, 20, 2921−
2924. (h) Zhang, Y.-M.; Yuan, M.-L.; Liu, W.-P.; Xie, J.-H.; Zhou, Q.-
L. Org. Lett. 2018, 20, 4486−4489. (i) Zheng, L.-S.; Phansavath, P.;
Ratovelomanana-Vidal, V. Org. Lett. 2018, 20, 5107−5111.
(j) Matsunami, A.; Ikeda, M.; Nakamura, H.; Yoshida, M.; Kuwata,
S.; Kayaki, Y. Org. Lett. 2018, 20, 5213−5218. (k) Vyas, V. K.;
Bhanage, B. M. Asian J. Org. Chem. 2018, 7, 346−349.
ASSOCIATED CONTENT
* Supporting Information
■
S
(4) Xie, J.-H.; Liu, S.; Huo, X.-H.; Cheng, X.; Duan, H.-F.; Fan, B.-
M.; Wang, L.-X.; Zhou, Q.-L. J. Org. Chem. 2005, 70, 2967−2973.
(5) Sun, H.-L.; Chen, F.; Xie, M.-S.; Guo, H.-M.; Qu, G.-R.; He, Y.-
M.; Fan, Q.-H. Org. Lett. 2016, 18, 2260−2263.
(6) (a) Yamakawa, M.; Yamada, I.; Noyori, R. Angew. Chem. 2001,
113, 2900−2903; Angew. Chem., Int. Ed. 2001, 40, 2818−2821.
(b) Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122,
The Supporting Information is available free of charge on the
Experimental procedures and compound characteriza-
D
Org. Lett. XXXX, XXX, XXX−XXX