J. J. Acton, III et al. / Bioorg. Med. Chem. Lett. 15 (2005) 357–362
Table 4. In vivo data of Compound 24 versus rosiglitazone
361
db/db Mouse20
Normal Sprague–Dawley rats21
Glucose
correctiona
(dose, mg/kg)
Body
weight gain
(dose, mg/kg)
Plasma AUC of
parent drug
(dose, mg/kg)
Heart wt.
(dose, mg/kg)
Brown adipose
tissue wt.
(BAT) (dose, mg/kg)
Plasma AUC of
parent drug
(dose, mg/kg)
Vehicle
24
None
ND
None
8.7lMh (3)
1.13 0.06g
1.17 0.09g (30)
0.31 0.03
0.45 0.05 (30)
None
90 11% (10)b
79 15% (3)c
60 17%b (10)
4% (10)
4% (3)
10% (10)
20.2lMh (2)
955lMh (30)
1607lMh (150)
Rosiglitazone
317lMh (10)
1.41 0.07g (150)
1.37 0.08g (30)
0.88 0.15 (150)
a Glucose correction is calculated as the percent correction of nonfasting hyperglycemia present in vehicle control db/db mice relative to normal
glucose levels in control db/lean mice, all on day 11 of dosing. Data is presented as mean glucose correction SEM.
b Average of two experiments.
c Average of four experiments.
5. Cock, T.-A.; Houten, S. M.; Auwerx, J. EMBO Rep. 2004,
5, 142; Also: Miller, A. R.; Etger, G. J. Expert Opin.
Investig. Drugs 2003, 12, 1489.
mice, while rosiglitazone resulted in a 23% heart weight
increase and a 183% BAT weight increase at an exposure
only five times greater than the exposure needed for effi-
cacy in db/db mice. Based upon these findings, we con-
clude that SPPARcM 24 possesses important
pharmacological advantages relative to the PPARc full
agonist rosiglitazone in these models.
6. Gurnell, M.; Savage, D. B.; Chatterjee, V. K. K.;
OÕRahilly, S. J. Clin. Endocrinol. Metab. 2003, 88, 2412.
7. Berger, J. P.; Petro, A. E.; McNaul, K. L.; Kelly, L. J.;
Zhang, B. B.; Richards, K.; Elbrecht, A.; Johnson, B. A.;
Zhou, G.; Doebber, T. W.; Biswas, C.; Parikh, M.;
Sharma, N.; Tanen, M. R.; Thompson, G. M.; Ventre, J.;
Adams, A. D.; Mosley, R.; Surwit, R. S.; Moller, D. E.
Mol. Endocrinol. 2003, 17, 662.
8. Rocchi, S.; Picard, F.; Vamecq, J.; Gelman, L.; Potier, N.;
Zeyer, D.; Dubuquoy, L.; Bac, P.; Champy, M.-F.;
Plunket, K. D.; Leesnitzer, L. M.; Blanchard, S. G.;
Desreumaux, P.; Moras, D.; Renaud, J.-P.; Auwerx, J.
Mol. Cells 2001, 8, 743.
9. Shimaya, A.; Kurosaki, E.; Nakano, R.; Hirayama, M.;
Shibasaki, M.; Shikama, H. Metabolism 2000, 49, 411.
10. Oberfield, J. L.; Collins, J. L.; Holmes, C. P.; Goreham, D.
P.; Cooper, J. P.; Cobb, J. E.; Lenhard, J. M.; Hull-Ryde,
E. A.; Mohr, C. P.; Blanchard, S. G.; Parks, D. J.; Moore,
L. B.; Lehmann, J. M.; Plunket, K.; Miller, A. B.;
Milburn, M. V.; Kliewer, S. A.; Willson, T. M. Proc.
Natl. Acad. Sci. U.S.A. 1999, 96, 6102.
During the course of these investigations, structural
modifications of full hPPARc agonists 1 and 2 led to
the identification of a series of potent partial agonists
or hSPPARcMs, typified by the meta-lactate substituted
3-benzylic indole 24. The series of compounds described
here feature improved pharmacokinetics as compared to
the original screening leads, while also demonstrating
excellent efficacy in rodent diabetes models. Further
evaluation demonstrated that separation of efficacy
fromhPPAR c mechanism-based liabilities can be
achieved in rodent models. These results indicate that
hSPPARcMs are attractive candidates for future
development.
11. Elbrecht, A.; Chen, Y.; Adams, A.; Berger, J.; Griffin, P.;
Klatt, T.; Zhang, B.; Menke, J.; Zhou, G.; Smith, R. G.;
Moller, D. E. J. Biol. Chem. 1999, 27, 7913.
Acknowledgements
12. Mukherjee, R.; Hoener, P. A.; Jow, L.; Bilakovics, J.;
Klausing, K.; Mais, D. E.; Faulkner, A.; Croston, G. E.;
Paterniti, J. R., Jr. Mol. Endocrinol. 2000, 14, 1425.
13. Lehmann, J. M.; Lenhard, J. M.; Oliver, B. B.; Ringold,
G. M.; Kliewer, S. A. J. Biol. Chem. 1997, 272, 3406.
14. Henke, B. R.; Adkison, K. K.; Blanchard, S. G.; Leesn-
itzer, L. M.; Mook, R. A., Jr.; Plunket, K. D.; Ray, J. A.;
Roberson, C.; Unwalla, R.; Willson, T. M. Bioorg. Med.
Chem. Lett. 1999, 3329.
We are indebted to Dr. Peter Meinke for critical reading
of this manuscript. We also wish to acknowledge the
skills and hard work of the many scientists who pro-
vided biological support including Margaret Wu, John
Ventre, Roger Meurer, NeelamSharma, Chhabi Biswas,
Raul Alvaro, and Zhesheng Chen.
15. Jeffrey, P. D.; McCombie, S. W. J. Org. Chem. 1982, 47,
587.
References and notes
16. Arnould, J. C.; Landier, F.; Pasquet, M. J. Tetrahedron
Lett. 1992, 33, 7133.
1. Reviews on PPARc and insulin resistance: Olefsky, J. M.;
Saltiel, A. R. Trends Endocrinol. Metab. 2000, 11, 362;
Berger, J.; Wagner, J. A. Diabetes Technol. Ther. 2002, 4,
163; Berger, J.; Moller, D. E. Annu. Rev. Med. 2002, 53,
409.
17. The experimental procedure used for the PPAR binding
experiment is in the following reference: Berger, J.;
Liebowitz, M. D.; Doebber, T. W.; Elbrecht, A.; Zhang,
B.; Zhou, G.; Biswas, C.; Cullinan, C. A.; Hayes, N. S.; Li,
Y.; Tanen, M.; Ventre, J.; Wu, M. S.; Berger, G. D.;
Mosley, R.; Marquis, R.; Santini, C.; Sahoo, S. P.;
Tolman, R. L.; Smith, R. G.; Moller, D. E. J. Biol. Chem.
1999, 274, 6718.
2. Tontonoz, P.; Hu, E.; Spiegelman, B. M. Cell 1994, 79,
1147.
3. Momose, Y.; Meguro, K.; Ikeda, H.; Hatanka, C.; Oi, S.;
Sodha, T. Chem. Pharm. Bull. 1991, 39, 1440.
4. Cantello, B. C. C.; Cawthorne, M. A.; Haigh, D.; Hindley,
R. M.; Smith, S. A.; Thurlby, P. J. Med. Chem. 1994, 37,
3977.
1
18. All compounds described in this paper gave consistent H
NMR and LC/MS data. Further detail describing
the synthetic sequences used, synthetic experimental