The Journal of Physical Chemistry B
Article
(12) Heyduk, A. F.; Nocera, D. G. Hydrogen Produced from
Hydrohalic Acid Solutions by a Two-Electron Mixed-Valence
Photocatalyst. Science 2001, 293, 1639−1641.
(13) White, T. A.; Whitaker, B. N.; Brewer, K. J. Discovering the
Balance of Steric and Electronic Factors Needed to Provide a New
Structural Motif for Photocatalytic Hydrogen Production from Water.
J. Am. Chem. Soc. 2011, 133, 15332−15334.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures, computational methodology, TA
laser setup, supplementary figures, and results. This material
(14) McCormick, T. M.; Calitree, B. D.; Orchard, A.; Kraut, N. D.;
Bright, F. V.; Detty, M. R.; Eisenberg, R. Reductive Side of Water
Splitting in Artificial Photosynthesis: New Homogeneous Photo-
systems of Great Activity and Mechanistic Insight. J. Am. Chem. Soc.
2010, 132, 15480−15483.
AUTHOR INFORMATION
■
Corresponding Author
Notes
(15) Curtin, P. N.; Tinker, L. L.; Burgess, C. M.; Cline, E. D.;
Bernhard, S. Structure−Activity Correlations among Iridium(III)
Photosensitizers in a Robust Water-Reducing System. Inorg. Chem.
2009, 48, 10498−10506.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(16) Dempsey, J. L.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B.
Hydrogen Evolution Catalyzed by Cobaloximes. Acc. Chem. Res. 2009,
42, 1995−2004.
This work was supported by National Science Foundation
(CHE-1055397 CAREER award to K.D.G.). A.I.K. acknowl-
edges support from the Department of Energy through the DE-
FGO2-05ER15685 grant and from the Humboldt Foundation
(Bessel Research Award). R.S.K. was supported by a McMaster
Fellowship.
́
(17) Jacques, P. A.; Artero, V.; Pecaut, J.; Fontecave, M. Cobalt and
Nickel Diimine-Dioxime Complexes as Molecular Electrocatalysts for
Hydrogen Evolution with Low Overvoltages. Proc. Natl. Acad. Sci.
U.S.A. 2009, 106, 20627−20632.
(18) Pool, D. H.; Stewart, M. P.; O’Hagan, M.; Shaw, W. J.; Roberts,
J. A. S.; Bullock, R. M.; DuBois, D. L. Calculation of Thermodynamic
Hydricities and the Design of Hydride Donors for CO2 Reduction.
Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 15634−15662.
(19) Morris, A. J.; Meyer, G. J.; Fujita, E. Molecular Approaches to
the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels. Acc.
Chem. Res. 2009, 42, 1983−1994.
(20) Zhou, D.; Khatmullin, R.; Walpita, J.; Miller, N. A.; Luk, H. L.;
Vyas, S.; Hadad, C. M.; Glusac, K. D. Mechanistic Study of the
Photochemical Hydroxide Ion Release from 9-Hydroxy-10-methyl-9-
phenyl-9,10-dihydroacridine. J. Am. Chem. Soc. 2012, 134, 11301−
11303.
(21) Fukuzumi, S.; Kuroda, S.; Tanaka, T. Flavin Analog-Metal Ion
Complexes Acting as Efficient Photocatalysts in the Oxidation of p-
Methylbenzyl Alcohol by Oxygen under Irradiation with Visible Light.
J. Am. Chem. Soc. 1985, 107, 3020−3027.
(22) Shi, X.; Mandel, S. M.; Platz, M. S. On the Mechanism of
Reaction of Radicals with Tirapazamine. J. Am. Chem. Soc. 2007, 129,
4542−4550.
(23) Chai, J. D.; Head-Gordon, M. Systematic Optimization of Long-
Range Corrected Hybrid Density Functionals. J. Chem. Phys. 2008,
128, 084106.
(24) Chai, J. D.; Head-Gordon, M. Long-Range Corrected Hybrid
Density Functionals with Damped Atom−Atom Dispersion Correc-
tions. Phys. Chem. Chem. Phys. 2008, 10, 6615−6620.
(25) Barone, V.; Cossi, M. Quantum Calculation of Molecular
Energies and Energy Gradients in Solution by a Conductor Solvent
Model. J. Phys. Chem. A 1998, 102, 1995−2001.
(26) Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.;
Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko, S. V.;
O’Neill, D. P. Advances in Methods and Algorithms in a Modern
Quantum Chemistry Program Package. Phys. Chem. Chem. Phys. 2006,
8, 3172−3191.
(27) Fukuzumi, S.; Kondo, Y.; Mochizuki, S.; Tanaka, T. Complex
Formation between NADH Model Compounds and Metalloporphyr-
ins. J. Chem. Soc., Perkin Trans. 2 1989, 1753−1761.
(28) Shukla, D.; De Rege, F.; Wan, P.; Johnston, L. J. Laser Flash
Photolysis and Product Studies of the Photoionization of N-
Methylacridan in Aqueous Solution. J. Phys. Chem. 1991, 95,
10240−10246.
(29) Fukuzumi, S.; Ishikawa, M.; Tanaka, T. Mechanisms of Photo-
Oxidation of NADH Model Compounds by Oxygen. J. Chem. Soc.,
Perkin Trans. 2 1989, 1037−1045.
(30) Fukuzumi, S.; Yorisue, T. 10,10′-Dimethyl-9,9′-biacridine
Acting as a Unique Electron Source Compared with the Correspond-
ing Monomer for the Efficient Reduction of Dioxygen, Catalysed by a
REFERENCES
■
(1) Nicotinamide-adenine-dinucleotide. Concise Encyclo-pedia Bio-
chemistry, 2nd ed.; Walter de Gruyer: New York, 1988.
(2) Zhu, X. Q.; Liu, Y. C.; Cheng, J. P. Which Hydrogen Atom Is
First Transferred in the NAD(P)H Model Hantzsch Ester Mediated
Reactions via One-Step and Multistep Hydride Transfer? J. Org. Chem.
1999, 64, 8980−8981.
(3) Zhu, X. Q.; Zou, H. L.; Yuan, P. W.; Liu, Y.; Cao, L.; Cheng, J. P.
A Detailed Investigation into the Oxidation Mechanism of Hantzsch
1,4-Dihydropyridines by Ethyl α-Cyanocinnamates and Benzylidene-
malononitriles. J. Chem. Soc., Perkin Trans. 2 2000, 1857−1861.
́
(4) Simon, J.; Guimaraes, C. R. W.; Correa, M. B.; de Oliveira, C. A.
̃
F.; da Cunha Pinto, A.; de Alencastro, R. B. Synthetic and Theoretical
Studies on the Reduction of Electron Withdrawing Group Conjugated
Olefins Using the Hantzsch 1,4-Dihydropyridine Ester. J. Org. Chem.
2003, 68, 8815−8822.
(5) Coleman, C. A.; Rose, J. G.; Murray, C. J. General Acid Catalysis
of the Reduction of p-Benzoquinone by an NADH Analog. Evidence
for Concerted Hydride and Hydron Transfer. J. Am. Chem. Soc. 1992,
114, 9755−9762.
(6) Fukuzumi, S.; Kotani, H.; Lee, Y. M.; Nam, W. Sequential
Electron-Transfer and Proton-Transfer Pathways in Hydride-Transfer
Reactions from Dihydronicotinamide Adenine Dinucleotide Analogues
to Non-Heme Oxoiron (IV) Complexes and p-Chloranil. Detection of
Radical Cations of NADH Analogues in Acid-Promoted Hydride-
Transfer Reactions. J. Am. Chem. Soc. 2008, 130, 15134−15142.
(7) Fukuzumi, S.; Tokuda, Y.; Kitano, T.; Okamoto, T.; Otera, J.
Electron-Transfer Oxidation of 9-Substituted 10-Methyl-9,10-Dihy-
droacridines. Cleavage of the Carbon-Hydrogen vs. Carbon-Carbon
Bond of the Radical Cations. J. Am. Chem. Soc. 1993, 115, 8960−8968.
(8) Miller, L. L.; Valentine, J. R. On the Electron-Proton-Electron
Mechanism for 1-Benzyl-1,4-dihydronicotinamide Oxidations. J. Am.
Chem. Soc. 1988, 110, 3982−3989.
(9) Fukuzumi, S.; Suenobu, T.; Patz, M.; Hirasaka, T.; Itoh, S.;
Fujitsuka, M.; Ito, O. Selective One-Electron and Two-Electron
Reduction of C60 with NADH and NAD Dimer Analogues via
Photoinduced Electron Transfer. J. Am. Chem. Soc. 1998, 120, 8060−
8068.
(10) Andrew, T. L.; Swager, T. M. A Fluorescence Turn-On
Mechanism to Detect High Explosives RDX and PETN. J. Am. Chem.
Soc. 2007, 129, 7254−7255.
(11) Yuasa, J.; Fukuzumi, S. A Mechanistic Dichotomy in Concerted
versus Stepwise Pathways in Hydride and Hydrogen Transfer
Reactions of NADH Analogues. J. Phys. Org. Chem. 2008, 21, 886−
896.
F
dx.doi.org/10.1021/jp401770e | J. Phys. Chem. B XXXX, XXX, XXX−XXX