Organometallics 2010, 29, 6639–6641 6639
DOI: 10.1021/om101068r
Chromium-Catalyzed Radical Cyclization of Bromo and Chloro Acetals
K. Cory MacLeod,† Brian O. Patrick,‡ and Kevin M. Smith*,†
†Department of Chemistry, University of British Columbia Okanagan, 3333 University Way, Kelowna, BC, Canada
V1V 1V7, and ‡Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
Received November 12, 2010
Summary: Cyclopentadienyl chromium β-diketiminate cata-
lysts are used for the radical cyclization of bromo and chloro
acetals. Mn powder activated with PbBr2 or PbCl2 is the stoichio-
metric reductant, and γ-terpinene is the hydrogen atom donor.
Although the primary cyclized product can be isolated and struc-
turally characterized as the Cr(III) complex, this substrate can
also be reduced catalytically under mild photolysis conditions.
bond dissociation energy can be controlled by changing the
ancillary ligands.10 Although Cr(III) lacks the extensive
biochemistry of organocobalt complexes,11 we wish to ex-
plore the M-R homolysis reactivity of well-defined chro-
mium complexes.
The radical cyclization of halo acetals (Ueno-Stork reac-
tion)12 has been used to explore new radical-based methodo-
logy.13 The reaction products are useful precursors for synth-
esis, and the starting materials are readily prepared from the
appropriate enol ether, allyl alcohol, and N-halosuccinimide.
Transition-metal-mediated reactions typically employ the iodo
acetals or the more stable bromo acetals.14 Oshima and co-
workers have reported radical cyclization reactions with zirco-
nocene-based reagents that are catalytic for bromo acetals and
stoichiometric for chloro acetals.15
The reversible generation of organic radicals has been pro-
posed as a key feature in several new carbon-carbon bond-
forming reactions catalyzed by first-row transition metals.1 The
same reactivity mode is the foundation for transition-metal-
mediated controlled radical polymerization.2 We previously re-
ported that the radical polymerization of vinyl acetate could be
initiated and controlled using a well-defined Cr(III) alkyl com-
plex3 and investigated how the rate of Cr-R homolysis could be
modified through steric interactions.4 We would now like to
report the use of the same CpCr[(XylNCMe)2CH] system for the
intramolecular radical cyclization of bromo and chloro acetals.
For decades, the biological chemistry of vitamin B12 has
guided the study of reversible metal-alkyl bond homolysis.
Organocobalt complexes with simple, readily modified Schiff
base ligands exhibit the critical Co(III)-alkyl and Co(III)-
hydride homolysis reactivity.5 Once the mechanism had been
established,6 these synthetic complexes could be applied in
the controlled radical polymerization and oligomerization of
activated olefins,7 as catalysts for H2 production,8 and as
reagents for organic synthesis.9 In each case, the key Co-R
*Corresponding author. E-mail: kevin.m.smith@ubc.ca.
(1) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656–2670.
(2) (a) Poli, R. Angew. Chem., Int. Ed. 2006, 45, 5058–5070. (b) Ouchi,
M.; Terashima, T.; Sawamoto, M. Chem. Rev. 2009, 109, 4963–5050. (c)
Smith, K. M.; McNeil, W. S.; Abd-El-Aziz, A. S. Macromol. Chem. Phys.
2010, 211, 10–16. (d) di Lena, F.; Matyjaszewski, K. Prog. Polym. Sci.
2010, 35, 959–1021.
(3) Champouret, Y.; MacLeod, K. C.; Baisch, U.; Patrick, B. O.;
Smith, K. M.; Poli, R. Organometallics 2010, 29, 167–176.
(4) MacLeod, K. C.; Conway, J. L.; Patrick, B. O.; Smith, K. M. J.
Am. Chem. Soc. ASAP (DOI: 10.1021/ja1083392).
Chromium(III) alkyl complexes are readily generated by
the single-electron oxidative addition of Cr(II) with organic
(10) (a) Fryzuk, M. D.; Leznoff, D. B.; Thompson, R. C.; Rettig, S. J. J.
Am. Chem. Soc. 1998, 120, 10126–10135. (b) Langlotz, B. K.; Fillol, J. L.; Gross,
J. H.; Wadepohl, H.; Gade, L. H. Chem.-Eur. J. 2008, 14, 10267–10279. (c)
Dutta, G.; Kumar, K.; Gupta, B. D. Organometallics 2009, 28, 3485–3491.
(11) Vincent, J. Dalton Trans. 2010, 39, 3787–3794.
(12) (a) Ueno, Y.; Chino, K.; Watanabe, M.; Moriya, O.; Okawara,
M. J. Am. Chem. Soc. 1982, 104, 5564–5566. (b) Stork, G.; Mook, R., Jr.;
Biller, S. A.; Rychnovsky, S. D. J. Am. Chem. Soc. 1983, 105, 3741–3742.
(5) Schrauzer, G. N. Acc. Chem. Res. 1968, 1, 97–103.
ꢀ ꢁ
(6) (a) Halpern, J. Acc. Chem. Res. 1982, 15, 238–244. (b) Samsel,
E. G.; Kochi, J. K. J. Am. Chem. Soc. 1986, 108, 4790–4804. (c) Daikh,
B. E.; Finke, R. G. J. Am. Chem. Soc. 1992, 114, 2938–2943.
(7) (a) Gridnev, A. A.; Ittel, S. D. Chem. Rev. 2001, 101, 3611–3659.
(13) Salom-Roig, X. J.; Denes, F.; Renaud, P. Synthesis 2004, 1903–1928.
(14) (a) Vaupel, A.; Knochel, P. J. Org. Chem. 1996, 61, 5743–5753. (b)
~
ꢀ
Phapale, V. B.; Bunuel, E.; García-Iglesias, M.; Cardenas, D. J. Angew. Chem.,
Int. Ed. 2007, 46, 8790–8795. (c) Wakabayashi, K.; Yorimitsu, H.; Oshima, K. J.
Am. Chem. Soc. 2001, 123, 5374–5375. (d) Ohmiya, H.; Yorimitsu, H.; Oshima,
K. J. Am. Chem. Soc. 2006, 128, 1886–1889. (e) Affo, W.; Ohmiya, H.; Fujioka,
T.; Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K.; Imamura, Y.; Mizuta, T.;
Miyoshi, K. J. Am. Chem. Soc. 2006, 128, 8068–8077. (f) Someya, H.; Kondoh,
A.; Sato, A.; Ohmiya, H.; Yorimitsu, H.; Oshima, K. Synlett 2006, 3061–3064.
(g) Zhou, L.; Hirao, T. J. Org. Chem. 2003, 68, 1633–1635. (h) F€urstner, A.;
Martin, R.; Krause, H.; Seidel, G.; Goddard, R.; Lehmann, C. W. J. Am. Chem.
Soc. 2008, 130, 8773–8787.
ꢀ ^
ꢀ ^
(b) Debuigne, A.; Poli, R.; Jerome, C.; Jerome, R.; Detrembleur, C. Prog.
Polym. Sci. 2009, 34, 211–239. (c) Sherwood, R. K.; Kent, C. L.; Patrick,
B. O.; McNeil, W. S. Chem. Commun. 2010, 46, 2456–2458.
(8) (a) Hu, X.; Brunschwig, B. S.; Peters, J. C. J. Am. Chem. Soc. 2007,
129, 8988–8998. (b) Dempsey, J. L.; Brunschwig, B. S.; Winkler, J. R.; Gray,
H. B. Acc. Chem. Res. 2009, 42, 1995–2004.
(9) (a) Okabe, M.; Tada, M. J. Org. Chem. 1982, 47, 5382–5384. (b)
€
Giese, B.; Erdmann, P.; Gobel, T.; Springer, R. Tetrahedron Lett. 1992, 33,
4545–4548. (c) Braunchaud, B. P.; Yu, G.-X. Organometallics 1993, 12,
4262–4264. (d) Johnson, M. D. Acc. Chem. Res. 1983, 16, 343–349. (e)
Pattenden, G. Chem. Soc. Rev. 1988, 17, 361–382. (f) Iqbal, J.; Bhatla, B.;
Nayyar, N. K. Chem. Rev. 1994, 94, 519–564. (g) Cahiez, G.; Moyeux, A.
Chem. Rev. 2010, 110, 1435–1462.
(15) (a) Fujita, K.; Nakamura, T.; Yorimitsu, H.; Oshima, K. J. Am.
Chem. Soc. 2001, 123, 3137–3138. (b) Fujita, K.; Yorimitsu, H.; Oshima, K.
Synlett 2002, 337–339. (c) Fujita, K.; Yorimitsu, H.; Oshima, K. Bull. Chem.
Soc. Jpn. 2004, 77, 1727–1736. (d) Fujita, K.; Yorimitsu, H.; Oshima, K.
Chem. Rec. 2004, 4, 110–119.
r
2010 American Chemical Society
Published on Web 11/24/2010
pubs.acs.org/Organometallics