10.1002/chem.201702545
Chemistry - A European Journal
COMMUNICATION
2014, 183; d) L. Yu, J. Cao, Org. Biomol. Chem. 2014, 12, 3986. Through
a palladium-catalyzed allyl transfer process, see: e) Y. Zhang, K. A.
DeKorver, A. G. Lohse, Y.-S. Zhang, J. Huang, R. P. Hsung, Org. Lett.
2009, 11, 899. Through a thermic rearrangement, see: f) M. B. Hieu, M.
D. E. Bolanos, F. Wudl, Org. Lett. 2005, 7, 783.
Acknowledgements
The authors thank CNRS, ICSN, Labex Lermit (ANR grant ANR-
10-LABX-33 under the program Investissements d’Avenir ANR-
11-IDEX-0003-01) and FCS Campus Saclay for financial support.
E. R., C. M. and S. V thank Labex Lermit and M. B. thanks FCS
Campus Saclay for fellowships.
[6]
For a survey of the use of ynamides in ring forming reactions, see: a) X.-
N. Wang, H.-S. Yeom, L.-C. Fang, S. He, Z.-X. Ma, B. L. Kedrowski, R.
P. Hsung, Acc. Chem. Res. 2014, 47, 560. For recent examples of the
use of ynamides in [2+2] cycloaddition, see: b) S. F. Tlais, R. L.
Danheiser, J. Am. Chem. Soc. 2014, 136, 15489; c) Y. Yuan, L. Bai, J.
Nan, J. Liu, X. Luan, Org. Lett. 2014, 16, 4316; d) B. Alcaide, P.
Author Contributions
Almendros, C. Lazaro-Milla, Chem.–Eur. J. 2016, 22, 8998; e) X.-N.
́
Wang, Z.-X. Ma, J. Deng, R. P. Hsung, Tetrahedron Lett. 2015, 56, 3463;
f) K. Enomoto, H. Oyama, M. Nakada, Chem.–Eur. J. 2015, 21, 2798; g)
L. Chen, J. Cao, Z. Xu, Z.-J. Zheng, Y.-M. Cui, L.-W. Xu, Chem. Commun.
2016, 52, 9574; h) C.-Z. Zhong, P.-T. Tung, T.-H. Chao, M.-C. P. Yeh, J.
Org. Chem. 2017, 82, 481. For recent examples of the use of
allenamides in [2+2] cycloaddition, see: R.-R. Liu, J.-P. Hu, J.-J. Hong,
C.-J Lu, J.-R. Gao, Y.-X.Jia, Chem. Sci. 2017, 8, 2811 and references
therein.
K. C. and R. H. D. designed and supervised the experiments and
wrote the manuscript, C. M.† and S. V.‡ optimized the reaction
conditions and initiated the scope study, E. R.† and M. B.‡
expanded the scope and performed the functionalization of the
compounds. P. R. performed the X-ray crystallography
experiments. † These authors contributed equally. ‡ These
authors contributed equally. The authors declare no competing
financial interests.
[7]
[8]
a) F. P. Cossío, A. Arrieta, M. A. Sierra, Acc. Chem. Res. 2008, 41, 925;
b) G. S. Singh, S. Sudheesh, ARKIVOC 2014, 337; c) A. D. Allen, T. T.
Tidwell, Chem. Rev. 2013, 113, 7287; d) C. R. Pitts, T. Lectka, Chem.
Rev. 2014, 114, 7930.
Keywords: ynamides • ketenimines • [2+2] cycloaddition •
azetidinimines • Staudinger synthesis
a) M. De Poortere, J. Marchand-Brynaert,, L. Ghosez, Angew. Chem.
1974, 86, 272; b) J. Marchand-Brynaert, M. Moya-Portuguez, D.
Lesuisse, L. Ghosez, J. Chem.Soc., Chem. Commun. 1980, 173; c) A.
Van Camp, D. Goossens, M. Moya-Portuguez, J. Marchand-Brynaert, L.
Ghosez, Tetrahedron Lett. 1980, 21, 3081; d) J. Marchand-Brynaert, M.
Moya-Portuguez, I. Huber, L. Ghosez, J. Chem.Soc., Chem. Commun.
1983, 818.
[1]
For general reviews, see: a) G. Evano, A. Coste, K. Jouvin, Angew.
Chem. 2010, 122, 2902.; Angew. Chem., Int. Ed. 2010, 49, 2840; b) K.
A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang, R. P.
Hsung, Chem. Rev. 2010, 110, 5064; c) X.-N. Wang, H.-S. Yeom, L.-C.
Fang, S. He, Z.-X. Ma, B. L. Kedrowski, R. P. Hsung, Acc. Chem. Res.
2014, 47, 560; d) G. Evano, C. Theunissen, M. Lecomte, Aldrichimica
Acta 2015, 48, 59; e) A. M. Cook, C. Wolf, Tetrahedron Lett. 2015, 56,
2377; f) G. Evano, N. Blanchard, G. Compain, A. Coste, C. S. Demmer,
W.Gati, C. Guissart, J. Heimburger, N. Henry, K. Jouvin, G. Karthikeyan,
A. Loaouiti, M. Lecomte, A. Martin-Mingot, B. Metayer, A. Michelet, C.
Theunissen, S. Thibaudeau, J. Wang, M. Zarca, C. Zhang, Chem. Lett.
2016, 45, 574.
[9]
a) B. Arnold, M. Regitz, Angew. Chem. 1979, 91, 337; Angew. Chem. Int.
Ed. Eng. 1979, 18, 320; b) M. Regitz, B. Arnold, D. Danion, H. Schubert,
G. Fusser, Bull. Soc. Chim. Belg. 1981, 90, 615.
[10] For other methods to access azetidinimines, see: a) D. Mostowicz, W.
Abramski, K. Piotowska, C. Belzecki, Pol. J. Chem. 1983, 57, 297; b) M.
Alajarín, P. Molina, A. Vidal, Tetrahedron Lett. 1996, 37, 8945; c) M.
Alajarín, P. Molina, A. Vidal, F. Tovar, Tetrahedron 1997, 53, 13449; d)
M. Alajarín, A. Vidal, F. Tovar, A. Arrieta, B. Lecea, F. P. Cossío, Chem.
Eur. J. 1999, 5, 1106; e) F. P. Cossío, A. Arrieta, B. Lecea, M. Alajarín,
A. Vidal, F. Tovar, J. Org. Chem. 2000, 65, 3633; f) M. Alajarín, A. Vidal,
F. Tovar, M. C. R. de Arellano, F. P. Cossío, A. Arrieta, B. Lecea, J. Org.
Chem. 2000, 65, 7512; g) B. Mendler, U.Kazmaier, V. Huch, M.Veith Org.
Lett. 2005, 7, 2643; h) M. Whiting, V. V. Fokin, Angew. Chem. Int. Ed.
2006, 118, 3229; Angew. Chem. Int. Ed. 2006, 45, 3157; i) Tz.
Gospodova, J. R. Rashkova, L. Z. Viteva, Bulg. Chem. Commun. 2008,
40, 568; j) S. Gouthaman, P. Shanmugam, A. B. Mandal, Tetrahedron
Lett. 2013, 54, 3007; k) Y. Xing, H. Zhao, Q. Shang, J. Wang, P. Lu, Y.
Wang, Org. Lett. 2013, 15, 2668.
[2]
For recent examples, see: a) J. A. Mulder, R. P. Hsung, M. O. Frederick,
M. R. Tracey, C. Zificsak, Org. Lett. 2002, 4, 1383; b) J. A. Mulder, K. C.
M. Kurtz, R. P. Hsung, H. Coverdale, M. O. Frederick, L. Shen, C. A.
Zificsak, Org. Lett. 2003, 5, 1547; c) Y. Zhang, R. P. Hsung, X. Zhang, J.
Huang, B. W. Slafer, A. Davis, Org. Lett. 2005, 7, 1047; d) Y. Zhang,
Tetrahedron 2006, 62, 3917; e) A. H. Sato, K. Ohashi, T. Iwasawa,
Tetrahedron Lett. 2013, 54, 1309; f) B. Peng, X. Huang, L.-G. Xie, N.
Maulide, Angew. Chem. 2014, 126, 8893; Angew. Chem., Int. Ed. 2014,
53, 8718; g) C. Theunissen, B. Metayer, G. Compain, N. Henry, J. Marrot,
A. Martin-Mingot, S. Thibaudeau, G. Evano, J. Am. Chem. Soc. 2014,
136, 12528; h) B. Metayer, G. Compain, K. Jouvin, A. Martin-Mingot, C.
Bachmann, J. Marrot, G. Evano, S. Thibaudeau, J. Org. Chem. 2015, 80,
3397; i) L.-G. Xie, S. Niyomchon, A. J. Mota, L. Gonzalez, N. Maulide,
Nat. Commun. 2016, 7, 10914; j) L.- G. Xie, S. Shaaban, X. Chen, N.
Maulide, Angew. Chem. 2016, 128, 13056; Chem., Int. Ed. 2016, 55,
12864; k) V. Tona, S. A. Ruider, M. Berger, S. Shaaban, M. Padmanaban,
L.-G. Xie, L. Gonzalez, N. Maulide, Chem. Sci. 2016, 7, 6032; l) M.
Lecomte, G. Evano, Angew .Chem. 2016, 128, 4623; Angew .Chem., Int.
Ed. 2016, 55, 4547; m) S. W. Kim, T.-W Um, S. Shin, Chem. Commun.
2017, 53, 2733.
[11] See Supporting Information for details.
[12] CCDC 1546588–1546592 (5aa, 5ba, 5ai, 5fa, 6 respectively) contain the
crystallographic data for this paper.
[13] In the context of antibiotic resistance, monocyclic β-lactam antibiotics
(monobactams) such as aztreonam hold a special position due to their
unique properties, see: C. Ramsey, A. P. MacGowan, J. Antimicrob.
Chemother. 2016, 76, 2704 and references therein.
[3]
For a review specifically covering the anionic chemistry of ynamides, see:
G. Evano, B. Michelet, C. Zhang, C. R. Chimie in press:
[4]
[5]
A. Hentz, P. Retailleau, V. Gandon, K. Cariou, R. H. Dodd, Angew. Chem.
2014, 126, 8473; Angew. Chem., Int. Ed. 2014, 53, 8333.
For a general review on the chemistry of ketenimine see: a) P. Lu, Y.
Wang, Chem. Soc. Rev. 2012, 41, 5687. For other strategies to generate
ketenimines from ynamides under basic conditions, see: b) A. Laouiti, F.
Couty, J. Marrot, T. Boubaker, M. M. Rammah, M. B. Rammah, G. Evano,
Org. Lett. 2014, 16, 2252; c) Y. Kong, L. Yu, Y. Cui, J. Cao, Synthesis
This article is protected by copyright. All rights reserved.