10.1002/chem.201902095
Chemistry - A European Journal
COMMUNICATION
Hernández, M. Gaydou, E. Serano, M. van Gemmeren, R. Martin, Top.
Curr. Chem. 2016, 374, 45; c) M. Börjesson, T. Moragas, D. Gallego,
R. Martin, ACS Catal. 2016, 6, 6739-6749; d) Q. Liu, L. Wu, R.
Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933; e) Y. Tsuji, T.
Fujihara, Chem. Commun. 2012, 48, 9956-9964.
2018, 57, 10034; Angew. Chem. 2018, 127, 6966-6970; b) J. Twilton,
C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. MacMillan, Nat.
Rev. Chem. 2017, 1, 0052; c) K. L. Skubi, T. R. Blum, T. P. Yoon,
Chem. Rev. 2016, 116, 10035; (d) M. N. Hopkinson, B. Sahoo, J. -L. Li,
F. Glorius, Chem. Eur. J. 2014, 20, 3874-3886.
[2]
[3]
H. Maag, Prodrugs of Carboxylic Acids; Springer: New York, 2007.
For selected catalytic reductive ipso-carboxylations of organic
(pseudo)halides at sp3 sites: a) L. -L. Liao, G. -M. Cao, J. -H. Ye, G. -Q.
Sun, W. -J. Zhou, Y. -Y. Gui, S. -S. Yan, G. Shen, D.-G. Yu J. Am.
Chem. Soc. 2018, 140, 17338-17342; b) Q. -Y. Meng, S. Wang, B.
König Angew. Chem. Int. Ed. 2017, 56, 13426-13430; Angew. Chem.
2017, 129, 13611-13615; c) M. Börjesson, T. Moragas, R. Martin, J.
Am. Chem. Soc. 2016, 138, 7504-7507; d) T. Moragas, M. Gaydou, R.
Martin, Angew. Chem. Int. Ed. 2016, 55, 5053-5057; Angew. Chem.
2016, 128, 5137-5141; e) Y. Liu, J. Cornella, R. Martin, J. Am. Chem.
Soc. 2014, 136, 11215-11215; f) A. Correa, T. León, R. Martin, J. Am.
Chem. Soc. 2014, 136, 1062-1069; g) T. León, A. Correa, R. Martin, J.
Am. Chem. Soc. 2013, 135, 1221-1224; h) S. Zhang, W. -Q. Chen, A.
Yu, L. -N. He, ChemCatChem 2015, 7, 3972-3977; i) K. Nogi, T.
Fujihara, J. Terao, Y. Tsuji, Chem. Commun. 2014, 50, 13052-13055.
For selected metal-catalyzed carboxylation events at sp3 sites with
prefunctionalized olefins as starting precursors: a) J. Hou, A. Ee, H.
Cao, H. -W. Ong, J. -H. Xu, J. Wu, Angew. Chem. Int. Ed. 2018, 57,
17220-17224; Angew. Chem. 2018, 130, 17466-17470; b) Q. -Y. Meng,
S. Wang, G. S. Huff, B. König, J. Am. Chem. Soc. 2018, 140, 3198-
3201; c) V. R. Yatham, Y. Shen, R. Martin, Angew. Chem. Int. Ed.
2017, 56, 10915-10919; Angew. Chem. 2017, 129, 11055-11059; d) M.
Gaydou, T. Moragas, F. Juliá-Hernández, R. Martin, J. Am. Chem. Soc.
2017, 139, 12161-12164; e) H. Seo, A. Liu, T. F. Jamison, J. Am.
Chem. Soc. 2017, 139, 13969-13972; f) J. -H. Ye, M. Miao, H. Huang,
S. -S. Yan, Z. -B. Yin, W. -J. Zhou, D. -G. Yu, Angew. Chem. Int. Ed.
2017, 56, 15416-15420; Angew. Chem. 2017, 128, 15618-15622; g) K.
Murata, N. Numasawa, K. Shimomaki, J. Takaya, N. Iwasawa Chem.
Commun. 2017, 53, 3098-3101; h) L. Wu, Q. Liu, I. Fleischer, R.
Jackstell, M. Beller, Nat. Commun. 2014, 5, 3091; i) T. G. Ostapowicz,
M. Schmitz, M. Krystof, J. Klankermayer, W. Leitner, Angew. Chem. Int.
Ed. 2013, 52, 12119-12123; Angew. Chem. 2013, 125, 12341-12345; j)
M. D. Greenhalgh, S. P. Thomas, J. Am. Chem. Soc. 2012, 134,
11900-11903; k) C. M. Williams, J. B. Johnson, T. Rovis, J. Am. Chem.
Soc. 2008, 130, 14936-14937.
[13] For recent reviews on chain-walking strategies: a) H. Sommer, F. Juliá-
Hernández, R. Martin, I. Marek ACS Cent. Sci. 2018, 4, 153-165; b) A.
Vasseur, J. Bruffaerts, I. Marek Nat. Chem. 2016, 8, 209-219; c) E.
Larionov, H. Li, C. Mazet Chem. Commun. 2014, 50, 9816-9826. For
selected recent reports on chain-walking strategies: (d) F. Zhou, Y.
Zhang, X. Xu, S. Zhu, Angew. Chem. Int. Ed. 2019, 58, 1754-1758;
Angew. Chem. 2019, 131, 1768-1772; (e) S. –Z. Sun, M. Börjesson, R.
Martin-Montero, R. Martin, J. Am. Chem. Soc. 2018, 140, 12765-12769;
(f) L. Peng, Z. Li, G. Yin, Org. Lett. 2018, 20, 1880-1883; (g) L. Peng, Y.
Li, Y. Li, W. Wang, H. Pang, G. Yin, ACS Catal. 2018, 8, 310-313; (h)
F. Chen, K. Chen, Y. Zhang, Y. He, Y. -M. Wang, S. Zhu, J. Am. Chem.
Soc. 2017, 139, 13929-13935.
[14] For details, see Supporting Information.
[15] For selected references in which ortho-substituents on the nitrogen
ligand exerted a critical influence on catalytic carboxylation reactions: a)
refs. 3b-f, 4b-e and 7; b) K. Nogi, T. Fujihara, J. Terao, Y. Tsuji, J. Org.
Chem. 2015, 80, 11618.
[4]
[16] Such high reactivity can be interpreted on the basis of an increased
nucleophilicity of the benzyl C–Ni bond and a more favorable chain-
walking event
[17] For Kolbe-like reaction mechanism involving potassium-phenoxide-CO2
complex: Z. Markovic, S. Markovic, N. Manojlovic, J. Predovic-Simovic,
J. Chem. Inf. Model. 2007, 47, 1520-1525.
[18] For selected reviews on sp3 C-H functionalization: (a) J. He, M. Wasa,
K. S. L. Chan, Q. Shao, J. -Q. Yu Chem. Rev. 2017, 117, 8754-8786;
(b) O. Baudoin Acc. Chem. Res. 2017, 50, 1114-1123; (c) G. He, B.
Wang, W. A. Nack, G. Chen, Acc. Chem. Res. 2016, 49, 635-645; (d)
N. Dastbaravardeh, M. Christakakou, M. Haider, M. Schnürch
Synthesis 2014, 46, 1421-1439; (e) G. Rouquet, N. Chatani Angew.
Chem. Int. Ed. 2013, 52, 11726-11743; Angew. Chem. 2013, 125,
11942-11959.
[19] Although tentative, TBAI might facilitate electron-transfer processes to
the metal center. See for example: M. Iyoda, H. Otsuka, K. Sato, N.
Nisato, M. Oda, Bull. Chem. Soc. Jpn. 1990, 63, 80. Particularly
noteworthy is the observation that related chain-walking scenarios
based on Ni/L7 results in benzylic sp3 C–H arylation with organic
halides (ref. 13h). Although tentative, we believe that the site-selectivity
pattern observed in our chain-walking photocarboxylation based on
Ni/L7 is due to a favorable insertion of CO2 into the harder primary sp3
C–Ni bond when compared to the softer benzylic sp3 site.
[5]
[6]
For selected reviews on C–H carboxylation techniques: (a) J. Hong, M.
Li, J. Zhang, B. Sun, F. Mo, ChemSusChem 2019, 12, 6-39; (b) J. Luo,
I. Larrosa, ChemSusChem 2017, 10, 3317-3332.
For selected sp2 C–H carboxylation scenarios, see: a) J. Luo, S.
Preciado, I. Larrosa, Chem. Eur. J. 2016, 22, 6798-6802; b) H. Mizuno,
J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2011, 133, 1251-1253; c) I.
I. F. Boogaerts, S. P. Nolan, J. Am. Chem. Soc. 2010, 132, 8858-8859;
d) L. Zhang, J. Cheng, T. Ohishi, Z. Hou, Angew. Chem. Int. Ed. 2010,
49, 8670-8673; Angew. Chem. 2010, 122, 8852-8855.
[20] For an excellent review on HAT processes, see: L. Capaldo, D. Ravelli
Eur. J. Org. Chem. 2017, 2017, 2056-2071.
[21] The photochemical Ni/L1 carboxylation of 3c and 3h resulted in <6%
yield of 4c and 4h, respectively. Under the limits of detection, no
benzylic sp3 C–H carboxylation was found in the crude mixtures.
[7]
For recent reviews on photocarboxylation reactions: (a) C. S. Yeung,
Angew. Chem. Int. Ed. 2019, doi: 10.1002/anie.201806285; Angew.
Chem. 2019, doi: 10.1002/ange.201806285; (b) J. Hou, J. -S. Li, J. Wu,
Asian J. Org. Chem. 2019, 7, 1439-1447.
Interestingly, the photocarboxylation of 1a under
a Ni/L7 regime
resulted in the preferential carboxylation at primary sp3 site. See ref. 14.
[22] a) K. Nemoto, S. Tanaka, M. Konno, S. Onozawa, M. Chiba, Y. Tanak,
Y. Sasai, R. Okubo, T. Hattori, Tetrahedron 2016, 72, 734-745; b) X.
Zhuo, C. Lescot, S. D. Friis, K. Daasbjerg, T. Skrydstrup, Angew.
Chem. Int. Ed. 2015, 54, 6862-6866; Angew. Chem. 2015, 127, 6966-
6970; c) W. -J. Yoo, M. G. Capdevila, X. Du, S. Kobayashi, Org. Lett.
2012, 14, 5326-5329.
[8]
[9]
a) H. Seo, M. H. Katcher, T. F. Jamison, Nat. Chem. 2017, 9, 453-456;
b) Y. Masuda, N. Ishida, M. Murakami, J. Am. Chem. Soc. 2015, 137,
14063-14066.
F. Juliá-Hernández, T. Moragas, J. Cornella, R. Martin, Nature 2017,
545, 84-88.
[10] Stoichiometric metallic waste is toxic and has to be treated and
recycled in industrial processes. See for example: R. Orru, M. Sannia,
A. Cincotti, G. Cao Chem. Eng. Sci. 1999, 54, 3053.
[23] For related spectroelectrochemical studies with (bipy)Ni(II)X2: R. Sun,
Y. Qin, S. Ruccolo, C. Schnedermann, C. Costentin, D. G. Nocera, J.
Am. Chem. Soc. 2019, 141, 89-93.
[11] For selected reviews in visible light photoredox catalysis: a) J. A.
Milligan, J. P. Phelan, S. O. Badir, G. A. Molander Angew. Chem. Int.
Ed. 2019, doi: 10.1002/anie.201809431; b) D. C. Fabry, M. Rueping,
Acc. Chem. Res. 2016, 49, 1969; c) M. N. Hopkinson, A. Tlahuext-Aca,
F. Glorius, Acc. Chem. Res. 2016, 49, 2261; d) M. D. Kärkäs, J. A.
Porco, C. R. J. Stephenson, Chem. Rev. 2016, 116, 9683; e) N. A.
Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075; f) C. K. Prier,
D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322.
[24] Deuterium labelling studies confirmed this observation. See ref. 14
[25] The transition state for the b-hydride elimination from putative alkyl–
Ni(I) species could not be optimized, suggesting that
a scenario
consisting of an iterative sequence of b-hydride elimination/migratory
insertion from Ni(I) intermediates is highly unlikely.
[26] For the role of Ni(I) in carboxylation reactions: (a) D. J. Charboneau, G.
W. Brudvig, N. Hazari, H. M. C. Lant, A. K. Sadjari ACS Catal. 2019, 9,
3228-3241; (b) F. S. Menges, S. M. Craig, N. Tötsch, A. Bloomfield, S.
Ghosh, H. -J. Krüger, M. A. Johnson Angew. Chem. Int. Ed. 2016, 55,
1282-1285; Angew. Chem. 2016, 128, 1304-1307.
[12] For selected reviews on dual catalysis in photochemical endeavors: a)
L. Marzo, S. K. Pagore, O. Reiser, B. König, Angew. Chem. Int. Ed.
This article is protected by copyright. All rights reserved.