834
V.V. Jerca et al. / Reactive & Functional Polymers 70 (2010) 827–835
We can notice that the absorbance decreases in intensity in the
same order that the C0 content decreases, when the molar concen-
tration of modified copolymers is kept constant at 3 ꢁ 10ꢀ5 M.
Acknowledgements
This work was partially achieved by means of PN2 CNMP Par-
teneriate 71-029 ‘‘Nabieco” and 31-056 ‘‘Biopolact” Projects (fi-
nanced by the Romanian Ministry of Education & Research), and
PN-II-ID-2008-2 ‘‘Macromolecular materials containing chro-
mophores” Project (financed by Romanian National Council for Sci-
entific Research in Higher Education).
3.6. Fluorescence characterization
The fluorescence of hydroxy azobenzene can be explained in
terms of azo-hydrazone tautomerism [49]. Smitha and Asha [50]
synthesized an azo-dye polymer with a similar structure starting
from 4-(4-hydroxy-phenylazo)benzoic acid methyl ester. They
mentioned that the fluorescence was lost upon coupling the azo-
dye with methacryloyl chloride and subsequent polymerization.
This fact sustained the idea that the emission properties are due
to the hydrazone form. For that reason, we used a different syn-
thetic strategy that preserved the hydroxyl group. At the same
time, supplementary methyl groups were introduced in the 30
and 50 positions of the benzene rings, because they are known to
shifting the tautomeric equilibrium towards the hydrazone species
[58].
References
[1] K. Aoi, M. Okada, Prog. Polym. Sci. 21 (1996) 151–208.
[2] R. Hoogenboom, Angew. Chem. Int. Ed. 48 (2009) 7978–7994.
[3] S. Kobayashi, H. Uyama, J. Polym. Sci. Part A: Polym. Chem. 40 (2002) 192–209.
[4] A. Levy, J. Polym. Sci. Part A: Polym. Chem. 6 (1968) 57–62.
[5] A. Levy, M. Litt, J. Polym. Sci. Part A: Polym. Chem. 6 (1968) 1883–1894.
[6] R. Hoogenboom, Macromol. Chem. Phys. 208 (2007) 18–25.
[7] J.A. Frump, Chem. Rev. 71 (1971) 483–505.
[8] B.M. Culbertson, Prog. Polym. Sci. 27 (2002) 579–626.
[9] T. Kagiya, T. Matsuda, M. Nakato, R. Hirata, J. Macromol. Sci. Chem. 6 (1972)
1631.
[10] J.M. Havard, M. Yoshida, D. Pasini, N. Vladimirov, J.M.J. Frechet, D.R. Medeiros,
K. Patterson, S. Yamada, C.G. Willson, J.D. Byers, J. Polym. Sci. Part A: Polym.
Chem. 37 (1999) 1225–1236.
[11] V.V. Jerca, A.F. Nicolescu, A.-M. Albu, D.M. Vuluga, Mol. Cryst. Liq. Cryst. 483
(2008) 78–88.
Solutions of C0, C0-Oxa and Px-C0 (3 ꢁ 10ꢀ5 M) in DMSO were
excited at 262 nm corresponding to the p–
pꢂ transition of the fluo-
rophore. The C0 had the highest fluorescence emission intensity,
while the emission intensity of Px-C0 copolymers was slightly
reduced as compared to C0-Oxa (see Fig. 7). The emission intensity
of the polymers is directly related to the content of azo-dye, and
increases with the molar ratio of the chromophore. The emission
[12] Z. Ning, H. Stephan, S. Anita, L. Robert, J. Rainer, Macromolecules 42 (2009)
2215–2221.
[13] M. Masatoshi, L. Peter, K. Shin-ya, S. Takeo, Polym. Bull. 34 (1995) 249–256.
[14] D.A. Tomalia, B.P. Thill, M.J. Fazio, Polym. J. 12 (1980) 661–675.
[15] M. Miyamoto, Y. Sano, Y. Kimura, T. Saegusa, Macromolecules 18 (1985) 1641–
1648.
spectra at the
p
–
pꢂ transition of the azobenzene units (kexcitation
=
[16] M. Miyamoto, Y. Sano, Y. Kimura, T. Saegusa, Makromol. Chem. 187 (1986)
1807–1817.
380 nm) were recorded for all the above-mentioned solutions.
The C0 and C0-Oxa had identical spectra (the profiles are given in
Fig. 7a); suggesting that the newly formed ester–amide structure
does not interfere with the emissive properties of C0.
[17] M. Miyamoto, Y. Sano, T. Saegusa, Makromol. Chem. 187 (1986) 2747–2752.
[18] M. Miyamoto, Y. Sano, T. Saegusa, Polym. J. 19 (1987) 557–566.
[19] M. Miyamoto, Y. Sano, T. Saegusa, J. Macromol. Sci. A 25 (1988) 627–641.
[20] S. Nivedita, M. Amol, S. G, F. Sushmita, G. Hua, J. Appl. Polym. Sci. 117 (2010)
1718–1730.
We ascribe the lower intensity of P0-C0 as compared to the
C0-Oxa to the azo-hydrazone tautomerism. The tautomerism in
polymers is shifted toward the azo form due to the interactions
between chains. The same dependence of fluorescence intensity
on the molar ratio of azo-dye was noticed in all our polymers
(Fig. 7b). However, we have to stress that here we reported only
preliminary results; further investigations on this matter are now
in progress and will be reported later.
[21] J.T. Yoona, W.H. Joa, M.S. Leeb, M.B. Koc, Polymer 42 (2001) 329–336.
[22] C.-W. Lee, H.-S. Park, M.-S. Gong, Sens. Actuators B 109 (2005) 256–263.
[23] D.L. Schmidt, R.F. Brady Jr., K. Lam, D.C. Schmidt, M.K. Chaudhury, Langmuir 20
(2004) 2830–2836.
[24] W.E. Baker, M. Saleem, Polymer 28 (1987) 2057–2062.
[25] H. Matthias, B. Matthias, L. Holger, G. Wolfram, M. Rolf, J. Polym. Sci. Part A:
Polym. Chem. 36 (1998) 1821–1827.
[26] B.M. Culbertson, J. Dent. 34 (2006) 556–565.
[27] T. Nishikubo, A. Kameyama, H. Tokai, Polym. J. 28 (1996) 134–138.
[28] T. Kagiya, T. Matsuda, Polym. J. 3 (1972) 307–314.
[29] S.K. Yesodha, C.K.S. Pillai, N. Tsutsumi, Prog. Polym. Sci. 29 (2004) 45–74.
[30] Y. Zhao, T. Ikeda, Smart Light Responsive Materials-Azobenzene-Containing
Polymers and Liquid Crystals, John Wiley & Sons, New Jersey, 2009.
[31] N.J. Li, J.M. Lu, X.W. Xia, Q.F. Xu, L.H. Wang, Polymer 50 (2009) 428–433.
[32] H.T. Pu, L. Liu, W.C. Jiang, X.W. Li, J.P. Chen, J. Appl. Polym. Sci. 108 (2008)
1378–1384.
4. Conclusions
The MMA–IPRO was the ideal system in our experiments due to
an excellent control upon the IPRO units in copolymer. The azo-
phores content in copolymers can be adjusted either from the reac-
tion time of the analogous substitution or from feed molar ratio.
Therefore, if a higher content of azo-dye is required then the P0
homopolymer would be an excellent choice, while other different
compositions can be provided by the Px-C0 copolymers. The ring-
opening method can be easily used to design other side-chain poly-
mers, without laborious work, keeping intact all features provided
by the first step of polymerization. The polymer analogous reaction
took place with a high degree of substitution, regardless of the Px
molar content in IPRO units. The molar compositions for Px-C0s
were appreciated from three distinct methods of characterization,
which were in a good agreement with one another. The modified
polymers (Px-C0) exhibited higher glass transition temperatures
compared to the Px copolymers, while the thermal stability de-
creased due to the azobenzene moieties. Our original synthetic ap-
proach favours, at least partially, the retaining of the fluorescent
activity in copolymers. These results suggest that a balanced choice
of chemical substituents and embedding environment can be valu-
able for exploitation of the azo-hydrazone tautomerism of C0 in
fluorescence applications.
[33] E. Schab-Balcerzak, B. Sapich, J. Stumpe, Polymer 46 (2005) 49–59.
[34] M. He, Y.M. Zhou, F. Dai, R. Liu, Y.P. Cui, T. Zhang, Polymer 50 (2009) 3924–
3931.
[35] L.H. Gan, X.L. Xia, Y.C. Chan, X. Hu, X.Y. Zhao, Polym. Adv. Technol. 14 (2003)
260–265.
[36] Y. Sui, D. Wang, J. Yin, Z.K. Zhu, Z.G. Wang, Chem. Phys. Lett. 339 (2001) 186–
190.
[37] A. Zerroukhi, A. Trouillet, D. Blanc, B. Boinon, A. Cachard, J.P. Montheard, J.
Appl. Polym. Sci. 51 (1994) 1165–1173.
[38] X.B. Chen, J.J. Zhang, H.B. Zhang, Z.H. Jiang, G. Shi, Y.B. Li, Y.L. Song, Dyes Pigm.
77 (2008) 223–228.
[39] S. Suresh, R.J. Gulotty, S.E. Bales, M.N. Inbasekaran, M.A. Chartier, C. Cummins,
D.W. Smith, Polymer 44 (2003) 5111–5117.
[40] H. Rau, Photoisomerization and photo-orientation of azobenzenes, in: Z.
Sekkat, W. Knoll (Eds.), Photoreactive Organic Thin Films, Academic Press,
Elsevier Science, 2002, pp. 3–38.
[41] M. Shimomura, T. Kunitake, J. Am. Chem. Soc. 109 (1987) 5175–5183.
[42] K. Tsuda, J. Am. Chem. Soc. 122 (2000) 3445–3452.
[43] J. Yoshino, N. Kano, T. Kawashima. Synthesis of the Most Intensely Fluorescent
Azobenzene by Utilizing the b–n Interaction, 2007, pp. 559–561.
[44] J. Yoshino, N. Kano, T. Kawashima, Chem. Lett. 37 (2008) 960–961.
[45] M. Ghedini, D. Pucci, G. Calogero, F. Barigelletti, Chem. Phys. Lett. 267 (1997)
341–344.
[46] Y. Wakatsuki, H. Yamazaki, P.A. Grutsch, M. Santhanam, C. Kutal, J. Am. Chem.
Soc. 107 (1985) 8153–8159.
[47] Q. Bo, Y. Zhao, Langmuir 23 (2007) 5746–5751.
[48] J. Nithyanandhan, N. Jayaraman, R. Davis, S. Das, Chem. Eur. J. 10 (2004) 689–
698.