510
M.A. Qasim et al. / Biochemical and Biophysical Research Communications 400 (2010) 507–510
[8] M. Laskowski Jr., M.A. Qasim, What can the structures of enzyme–inhibitor
complexes tell us about the structures of enzyme substrate complexes?,
Biochim Biophys. Acta 1477 (2000) 324–337.
acid side chains at pH 5.0–5.5 may have a physiological role. For
example, granulocytes are rich in chymotrypsin-like serine prote-
ases and have a pH between 5.0 and 6.0 [21]—a pH range well sui-
ted for cleavage at peptide bonds contributed by Asp and Glu.
Regardless of any physiological role of the action of serine prote-
ases on acidic amino acids at low pH, the results presented here
suggest that such proteases can be used for cleavage at acidic ami-
no acids by performing the cleavage at an appropriate low pH.
[9] W. Ardelt, M. Laskowski Jr., Turkey ovomucoid third domain inhibits eight
different serine proteinases of varied specificity on the same . . . Leu18
Glu19 . . . reactive site, Biochemistry 24 (1985) 5313–5320.
-
[10] M. Laskowski Jr., M.A. Qasim, Z.-P. Yi, Additivity-based prediction of
equilibrium constants for some protein–protein associations, Curr. Opin.
Struct. Biol. 13 (2003) 130–139.
[11] M.A. Qasim, M.R. Ranjbar, R. Wynn, S. Anderson, M. Laskowski Jr., Ionizable P1
residues in serine proteinase inhibitors undergo large pK shift on complex
formation, J. Biol. Chem. 270 (1995) 27419–27422.
[12] M.A. Qasim, Streptogrisin B, in: A.J. Barrett, N.D. Rawlings, J.F. Woessner (Eds.),
Handbook of Proteolytic Enzymes, second ed., Elsevier Academic Press, 2004,
pp. 1458–1462.
Acknowledgments
[13] A.J. Barrett, Cathepsin G, Methods Enzymol. 80 (Pt. C) (1981) 561–565.
[14] A.R. Khan, M.N.G. James, Molecular mechanisms for the conversion of
zymogens to active proteolytic enzymes, Protein Sci. 7 (1998) 815–836.
[15] M.A. Qasim, S.M. Lu, J.H. Ding, K.S. Bateman, M.N.G. James, S. Anderson, J.K.
Song, J.L. Markley, P.J. Ganz, C.W. Saunders, M. Laskowski Jr., Thermodynamic
criterion for the conformation of P1 residues of substrates and of inhibitors in
complexes with serine proteinases, Biochemistry 38 (1999) 7142–7150.
[16] H. Czapinska, J. Otlewski, Structural and energetic determinants of the S1-site
specificity in serine proteases, Eur. J. Biochem. 260 (1999) 571–595.
[17] J. Song, M. Laskowski Jr., M.A. Qasim, J.L. Markley, NMR determination of pKa
values for Asp, Glu, His, and Lys mutants at each variable contiguous enzyme–
inhibitor contact position of the turkey ovomucoid third domain, Biochemistry
42 (2003) 2847–2856.
[18] V.L. Laurents, B.M.P. Huyghues-Despointes, M. Bruix, R.L. Thurlkill, D. Schell, S.
Newsom, G.R. Grimsley, K.L. Shaw, S. Trevino, M. Rico, J.M. Birggs, J.M.
Antosiewicz, J.M. Scholtz, C.N. Pace, Charge–charge interactions are key
determinants of the pK values of ionizable groups in ribonuclease Sa
(pI = 3.5) and a basic variant (pI = 10.2), J. Mol. Biol. 325 (2003) 1077–1092.
[19] C. Capasso, M. Rizzi, E. Menegatti, P. Ascenzi, M. Bolognesi, Crystal structure of
Financial support was provided by an NIH Grant GM 10831 to
M.L. M.A.Q. was a recipient of a summer Faculty Research Grant
from IPFW. We thank Dr. Ronald S. Friedman for careful reading
of the manuscript and for suggesting many changes.
References
[1] E. Di Cera, Serine proteases, IUBMB Life 61 (2009) 510–515.
[2] L. Hedstrom, Serine protease mechanism and specificity, Chem. Rev. 102
(2002) 4501–4523.
[3] I. Schechter, A. Berger, On the size of active site in proteases: I. Papain,
Biochem. Biophys. Res. Commun. 27 (1967) 157–162.
[4] W. Lu, I. Apostol, M.A. Qasim, N. Warne, R. Wynn, W.-L. Zhang, S. Anderson, Y.-
W. Chiang, E. Ogin, I. Rothberg, K. Ryan, M. Laskowski Jr., Binding of amino acid
side chains to S1 cavities of serine proteinases, J. Mol. Biol. 266 (1997) 441–
461.
[5] K.S. Bateman, S. Anderson, W. Lu, M.A. Qasim, M. Laskowski Jr., M.N.G. James,
Deleterious effects of b-branched residues in the S1 specificity pocket of
Streptomyces griseus proteinase B: crystal structures of the turkey ovomucoid
the bovine a-chymotrypsin:Kunitz inhibitor complex: an example of multiple
protein:protein recognition sites, J. Mol. Recognit. 10 (1997) 26–35.
[20] A.J. Scheidig, T.R. Hynes, L.A. Pelletier, J.A. Wells, A.A. Kossiakoff, Crystal
structure of bovine chymotrypsin and trypsin complexed to the inhibitor
domain of Alzheimer’s amyloid b-protein precursor (APPI) and basic
pancreatic trypsin inhibitor (BPTI): engineering of inhibitors with altered
specificities, Protein Sci. 6 (1997) 1806–1824.
third domain variants Ile18I Val18I Thr18I and Ser18I in complex with
, , ,
Streptomyces griseus proteinase B, Protein Sci. 9 (2000) 83–94.
[6] H. Czapinska, R. Helland, A.O. Smalås, J. Otlewski, Crystal structures of five
bovine chymotrypsin complexes with P1 BPTI variants, J. Mol. Biol. 344 (2004)
1005–1020.
[21] M.B. De Young, E.F. Nemeth, A. Scarpa, Measurement of the internal pH of mast
cell granules using microvolumetric fluorescence and isotopic techniques,
Arch. Biochem. Biophys. 254 (1987) 222–233.
[7] M. Laskowski Jr., M.A. Qasim, S.M. Lu, Interaction of standard mechanism,
canonical protein inhibitors with serine proteinases, in: C. Kleanthous (Ed.),
Protein–Protein Recognition, Oxford University Press, 2000, pp. 228–279.