S. Farhadi, S. Sepahvand / Journal of Molecular Catalysis A: Chemical 318 (2010) 75–84
83
[6] C. Cao, L.P. Wei, Q.G. Huang, L.S. Wang, S.K. Han, Chemosphere 38 (1999)
565–571.
[7] (a) S. Gowda, K. Abraj, D.C. Gowda, Tetrahedron Lett. 43 (2002) 1329–1331 and
references cited therein;
(b) F.K. Khan, J. Dash, C. Sudheer, R.K. Gupta, Tetrahedron Lett. 44 (2003)
7783–7787.
[8] S.K. Mohapatra, S.U. Sonavane, R.V. Jayaram, P. Selvam, Org. Lett. 4 (2002)
4297–4300.
[9] S.K. Mohapatra, S.U. Sonavane, R.V. Jayaram, P. Selvam, Appl. Catal. B: Environ.
46 (2003) 155–163.
[10] P. Selvam, S.K. Mohapatra, S.U. Sonavane, R.V. Jayaram, Tetrahedron Lett. 45
(2004) 2003–2007.
[11] P. Selvam, S.K. Mohapatra, S.U. Sonavane, R.V. Jayaram, Appl. Catal. B: Environ.
49 (2004) 251–255.
[12] P. Selvam, S.U. Sonavane, S.K. Mohapatra, R.V. Jayaram, Tetrahedron Lett. 45
(2004) 3071–3075.
[13] W.M. Horspool, P.S. Song, CRC Handbook of Organic Photochemistry and Pho-
tobiology, CRC Press, Boca Raton, 1995.
[14] (a) M.A. Fox, M.T. Dulay, Chem. Rev. 93 (1993) 341–357;
(b) M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995)
69–96.
[15] (a) A. Fujishima, T.N. Rao, D.A. Tryk, Photochem. Photobiol. C: Photochem. Rev.
1 (2000) 1–12;
(b) A. Maldotti, R. Molinari, A. Amadelli, Chem. Rev. 102 (2002) 3811–3836.
[16] E. Papaconstantinou, J. Chem. Soc., Chem. Commun. (1982) 12–13.
[17] E. Papaconstantinou, Chem. Soc. Rev. 18 (1989) 1–31.
[18] T. Yamase, Chem. Rev. 98 (1998) 307–325.
Scheme 2. The synergistic effect between ZrO2 semiconductor and photoactivated
Na4W10O32 in nanocomposite.
photocatalyst in photochemical reactions. Higher photocatalytic
activity of the Na4W10O32/ZrO2 is also due to synergistic effect
between ZrO2 semiconductor and photoactivated POM as shown
in Scheme 2. The synergistic effect is that in the Na4W10O32/ZrO2
system, the interfacial electron transfer takes place from the ZrO2
conduction band to photoexcited state of POM under UV–vis illu-
mination. Such as effective electron transfer can inhibit the fast
electron–hole recombination on ZrO2 and the trapped holes have
sufficient time to react with alcohol.
[19] C.M. Prosser-McCartha, C.L. Hill, J. Am. Chem. Soc. 112 (1990)
3671–3673.
[20] K. Nomiya, Y. Sugie, T. Miyazaki, M. Miwa, Polyhedron 5 (1986) 1267–1271.
[21] T. Yamase, T. Usami, J. Chem. Soc., Dalton Trans. (1988) 183–190.
[22] B.S. Jaynes, C.L. Hill, J. Am. Chem. Soc. 115 (1993) 12212–12213.
[23] A. Mylonas, E. Papaconstantinou, J. Photochem. Photobiol. A: Chem. 94 (1996)
77–82.
[24] A. Maldotti, A. Molinari, R. Amadelli, Chem. Rev. 102 (2002) 3811–3836.
[25] A. Maldotti, R. Amadelli, G. Varani, S. Tollari, F. Porta, Inorg. Chem. 33 (1994)
2968–2973.
[26] D. Dondi, M. Fagnoni, A. Molinari, A. Maldotti, A. Albini, Chem. Eur. J. 10 (2004)
142–148.
[27] A. Maldotti, A. Molinari, P. Bergamini, R. Amadelli, P. Battioni, D. Mansuy, J. Mol.
Catal. A: Chem. 113 (1996) 147–157.
[28] L.P. Ermolenko, J.A. Delaire, C.J. Giannotti, J. Chem. Soc., Perkin Trans. 2 (1997)
25–30.
[29] D. Duncan, M.A. Fox, J. Phys. Chem. B 102 (1998) 4559–4567.
[30] A. Hiskia, A. Mylonas, E. Papaconstantinou, Chem. Soc. Rev. 30 (2001) 62–
69.
significant role to this enhanced photocatalytic activity. The BET
surface area of Na4W10O32/ZrO2 nanocomposite was 346 m2 g−1
which is higher than those of the pure Na4W10O32 (<10 m2 g−1
)
[18] and sol-gel derived zirconia support (186.9 m2 g−1) [51]. The
higher specific surface area not only provides more contact area
for reactants and photocatalyst to achieve a higher electron trans-
fer efficiency, but also exposes more surface area of photocatalyst
under irradiation which could enhance the reduction efficiency.
[31] C. Tanielian, C. Schweitzer, R. Seghrouchni, M. Esch, R. Mechin, Photochem.
Photobiol. Sci. 2 (2003) 297–305.
[32] C. Tanielian, K. Duffy, A. Jones, J. Phys. Chem. B 101 (1997) 4276–4282.
[33] A. Ioannidis, E. Papaconstantinou, Inorg. Chem. 24 (1985) 439–441.
[34] A. Hiskia, E. Papaconstantinou, Inorg. Chem. 31 (1992) 163–167.
[35] A. Troupis, A. Hiskia, E. Papaconstantinou, New J. Chem. 25 (2001)
361–363.
4. Conclusions
[36] A. Troupis, A. Hiskia, E. Papaconstantinou, Environ. Sci. Technol. 39 (2002)
5355–5362.
[37] A. Troupis, A. Hiskia, E. Papaconstantinou, Angew. Chem. Int. Ed. 41 (2002)
1911–1914.
[38] E. Gkika, A. Troupis, A. Hiskia, E. Papaconstantinou, Environ. Sci. Technol. 39
(2005) 4242–4248, and references therein.
[39] E. Gkika, A. Troupis, A. Hiskia, E. Papaconstantinou, Appl. Catal. B: Environ. 62
(2006) 28–34.
[40] I. Arslan-Alaton, J.L. Ferry, J. Photochem. Photobiol. A: Chem. 152 (2002)
175–181.
[41] I. Arslan-Alaton, Dyes Pigments 60 (2004) 167–176.
[42] A. Troupis, E. Gkika, T. Triantis, A. Hiskia, E. Papaconstantinou, J. Photochem.
Photobiol. A: Chem. 188 (2007) 272–278.
In conclusion, in this work Na4W10O32/ZrO2 nanocomposite
was synthesized via a sol–gel process and used as a novel, efficient,
environmentally benign and recyclable heterogeneous photocat-
alyst for the reduction of azo compounds into amines in the
presence of 2-propanol as an electron source. The present work
provided a new type of heterogeneous photocatalytic materials
for potential applications in synthetic organic chemistry. Study
on detailed mechanism and also photocatalytic applications of
Na4W10O32/ZrO2 and similar composites to reduction of other
organic substrates are now in progress in our laboratory.
[43] A. Troupis, T.M. Triantis, E. Gkika, A. Hiskia, E. Papaconstantinou, Appl. Catal. B:
Environ. 86 (2008) 98–107.
[44] (a) A. Molinari, G. Varani, E. Polo, S. Vaccari, A. Maldotti, J. Mol. Catal. A: Chem.
262 (2007) 156–163;
Acknowledgement
(b) A. Maldotti, A. Molinari, F. Bigi, J. Catal. 253 (2008) 312–317.
[45] (a) Y. Guo, D. Li, C. Hu, E. Wang, Y. Wang, Y. Zhou, S. Feng, Appl. Catal. B: Environ.
30 (2001) 337–349;
We thank the Lorestan university research council for financial
supporting this research.
(b) Y. Yang, Q. Wu, Y. Guo, C. Hu, E. Wang, J. Mol. Catal. A: Chem. 225 (2005)
203–212;
References
(c) R.R. Ozer, J.L. Ferry, J. Phys. Chem. B 106 (2002) 4336–4342;
(d) S. Anandan, S.Y. Ryu, W. Cho, M. Yoon, J. Mol. Catal. A: Chem. 195 (2003)
201–208;
(e) H.-Y. Shen, H.-L. Mao, L.-Y. Ying, Q.-H. Xia, J. Mol. Catal. A: Chem. 276 (2007)
73–79.
[1] P.F. Gorden, in: D.R. Waring, G. Hallas (Eds.), The Chemistry and Application of
Dyes, Plenum Press, New York, 1990.
[2] H. Zollinger, Diazo Chemistry I. Aromatic and Heteroaromatic Compounds,
VCH, New York, 1994.
[3] (a) M. Hudlicky, Reduction in Organic Chemistry, second ed., ACS, Washington,
DC, 1996;
(b) K. Vinodgopal, P.V. Kamat, Environ. Sci. Technol. 29 (1995) 841–845.
[4] R. Jain, M. Bhargava, N. Sharma, J. Sci. Ind. Res. India 62 (2003) 813–819.
[5] F.P. van der Zee, G. Lettinga, J.A. Field, Water Sci. Technol. 42 (2000) 301–308.
[46] (a) S. Farhadi, M. Afshari, M. Maleki, Z. Babazadeh, Tetrahedron Lett. 46 (2005)
8483–8486;
(b) S. Farhadi, Z. Momeni, J. Mol. Catal. A: Chem. 277 (2007) 47–52;
(c) S. Farhadi, M. Zaidi, Appl. Catal. A: Gen. 354 (2009) 119–126.
[47] (a) N. Navio, M.C. Hidalgo, G. Colon, S.G. Botta, M.I. Litter, Langmuir 17 (2001)
202–210;