Journal of Agricultural and Food Chemistry
ARTICLE
(3) Wu, J. P.; Muir, A. D. Isoflavone during protease hydrolysis of
defatted soybean meal. Food Chem. 2010, 118, 328–332.
(4) Anderson, R.; Wolf, W. Composition changes in trypsin inhi-
bitor, phytic acid, saponins and isoflavones related to soybean proces-
sing. J. Nutr. 1995, 125, 581S–588S.
(5) Jackson, C.; Dini, J.; Avandier, C.; Rupasinghe, H.; Faulkner, H.;
Poysa, V. Effects of processing on the content and composition of
isoflavones during manufacturing of soy beverage and tofu. Process
Biochem. 2002, 37, 1117–1123.
(6) Nielsen, I. L.; Williamson, G. Review of the factors affecting
bioavailability of soy isoflavones in humans. Nutr. Cancer 2007, 57, 1–10.
(7) Walsh, K. R.; Haak, S. J.; Bohn, T.; Tian, Q.; Schwartz, S. J.;
Failla, M. L. Isoflavonoid glucosides are deconjugated and absorbed in
the small intestine of human subjects with ileostomies. Am. J. Clin. Nutr.
2007, 85, 1050–1056.
(24) Goyal, K.; Selvakumar, P.; Hayashi, K. Characterization of a
thermostable beta-glucosidase (Bg1B) from Thermotoga maritima showing
transglycosylation activity. J. Mol. Catal B: Enzym. 2001, 15 (1-3), 45–53.
(25) Xue, Y. M.; Song, X. F.; Yu, J. J. Overexpression of β-glucosidase
from Thermotoga maritima for the production of highly purified agly-
cone isoflavones from soy flour. World J. Microbiol. Biotechnol. 2009, 25,
2165–2172.24.
(26) Xue, Y. M.; Shao, W. L. Expression and characterization of a
thermostable beta-xylosidase from the hyperthermophile, Thermotoga
maritima. Biotechnol. Lett. 2004, 26 (19), 1511–1515.
(27) Sambrook, J.; Fritsch, E.; Maniatis, T. Molecular cloning: a
laboratory manual, 2nd ed.; Cold Spring Harbor Laboratory Press: 1989.
(28) Bradford, M. M. A rapid and sensitive method for the quantita-
tion of microgram quantities of protein utilizing the principle of protein-
dye binding. Anal. Biochem. 1976, 72, 248–254.
(8) Chuankhayan, P.; Rimlumduan, T.; Svasti, J.; Cairns, J. Hydro-
lysis of soy isoflavonoid glycosides by Dalbergia β-glucosidases. J. Agric.
Food Chem. 2007, 55, 2407–2412.
(9) Kuo, L. C.; Cheng, W. Y.; Wu, R. Y.; Huang, C. J.; Lee, K. T.
Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis
natto. Appl. Microbiol. Biotechnol. 2006, 73, 314–320.
(10) Ismail, B.; Hayes, K. β-Glycosidase activity toward different
glycosidic forms of isoflavones. J. Agric. Food Chem. 2005, 53, 4918–4924.
(11) Chun, J. Y.; Kim, J. S.; Kim, J. H. Enrichment of isoflavone
aglycones in soymilk by fermentation with single and mixed cultures of
Streptococcus infantarius 12 and Weissella sp 4. Food Chem. 2008, 109,
278–284.
(29) Miller, G. Use of dinitrosalicylic acid reagent for determination
of reducing sugars. Anal. Chem. 1959, 31, 426–428.
(30) Mitchell, R. W.; Hahn-Haegerdal, B.; Ferchak, J. D.; Pye, E. K.
Characterization of beta-1,4-glucosidase activity in Thermoanaerobacter
ethanolicus. Biotechnol. Bioeng. Symp. 1982, 12, 461–467.
(31) Breves, R.; Bronnenmeier, K.; Wild, N.; Lottspeich, F.;
Staudenbauer, W. L.; Hofemeister, J. Genes encoding two different
beta-glucosidases of Thermoanaerobacter brockii are clustered in a
common operon. Appl. Environ. Microbiol. 1997, 63, 3902–3910.
(32) Haki, G. D.; Rakshit, S. K. Developments in industrially
important thermostable enzymes: a review. Bioresour. Technol. 2003,
89, 17–34.
(12) Yang, S. Q.; Jiang, Z. Q.; Yan, Q. J.; Zhu, H. F. Characterization
of a thermostable extracellular beta-glucosidase with activities of exoglu-
canase and transglycosylation from Paecilomyces thermophila. J. Agric.
Food Chem. 2008, 56, 602–608.
(33) Roberge, M.; Dupont, C.; Morosoli, R.; Shareck, E; Kluepfei, D.
Asparagine-127 of xylanase A from Streptomyces lividans, a key residue in
glycosyl hydrolases of superfamily 4/7: kinetic evidence for its involve-
ment in stabilization Stabilization of the catalytic intermediate. Protein
Eng. 1997, 10, 399–403.
(34) Joshi, M. D.; Sidhu, G.; Pot, I.; Brayer, G. D.; Withers, S. G.;
McIntosh, L. P. Hydrogen bonding and catalysis: a novel explanation for
how a single amino acid substitution can change the pH optimum of a
glycosidase. J. Mol. Biol. 2000, 299, 255–279.
(35) Zhang, C.; Yang, X. Q.; Kong, H. Q.; Lu, Q. Y.; Li, X.; Liu, M. L.
Current studies on stability of soybean isoflavones in different process
conditions. Soybean Sci. 2006, 25, 73–76.
(36) Zechel, D. L.; Boraston, A. B.; Gloster, T.; Boraston, C. M.;
Macdonald, J. M.; Tilbrook, D. M.; Stick, R. V.; Davies, G. J. Iminosugar
glycosidase inhibitors: structural and thermodynamic dissection of the
binding of isofagomine and 1-deoxynojirimycin to beta-glucosidases.
J. Am. Chem. Soc. 2003, 125, 14313–14323.
(13) Xue, Y. M.; Yu, J. J.; Song, X. F. Hydrolysis of soy isoflavone
glycosides by recombinant beta-glucosidase from hyperthermophile
Thermotoga maritima. J. Ind. Microbiol. Biotechnol. 2009, 36, 1401–1408.
(14) Tsangalis, D.; Ashton, J. F.; McGill, A. E. J.; Shah, N. P.
Enzymatic transformation of isoflavone phytoestrogens in soymilk by
β-glucosidase-producing bifidobacteria. J. Food Sci. 2002, 67, 3104–3113.
(15) Ming, C. H.; Terrence, L. G. Partial purification and character-
ization of a soybean β-glucosidase with high specific activity towards
isoflavone conjugates. Phytochemistry 2001, 58, 995–1005.
(16) Liu, Y.; Zhou, S. N.; Chen, Z. S.; Zhong, Y. C.; Liu, Y. H.
Purification and characterization of an isoflavone-conjugates-hydrolyz-
ing R-glucosidase from endophytic bacterium. J. Agric. Food Chem. 2004,
52, 1940–1944.
(17) Kuo, L. C.; Lee, K. T. Cloning, expression, and characterization
of two β-glucosidases from isoflavone glycoside-hydrolyzing Bacillus
subtilis natto. J. Agric. Food Chem. 2008, 56, 119–125.
(18) Suzuki, H.; Watanabe, R.; Fukushima, Y.; Fujita, N.; Noguchi,
A.; Yokoyama, R.; Nishitani, K.; Nishino, T.; Nakayama, T. An
isoflavone conjugate-hydrolyzing β-glucosidase from the roots of soy-
bean (Glycine max) seedlings. J. Biol. Chem. 2006, 4, 30251–30259.
(19) Xie, M. J.; Song, M.; Zou, C. X.; Lu, M. C.; Jin, F. X. Purification
and characterization of an isoflavone-conjugates-hydrolyzing β-glucosi-
dase. Biol. Eng. 2006, 22 (4), 635–638.
(20) Yang, S. Q.; Wang, L. J.; Yan, Q. J.; Jiang, Z. Q.; Li, L. T.
Hydrolysis of soybean isoflavone glycosides by a thermostable beta-
glucosidase from Paecilomyces thermophila. Food Chem. 2009, 115 (4),
1247–1252.
(21) Claire, V.; Gregory, J. Z. Hyperthermophilic Enzymes: Sources,
Uses, and Molecular Mechanisms for Thermostability. Microbiol. Mol.
Biol. Rev. 2001, 65, 1–43.
(22) Mai, V.; Wiegel, J.; Lorenz, W. W. Cloning, sequencing, and
characterization of the bifunctional xylosidase-arabinosidase from the
anaerobic thermophile Thermoanaerobacter ethanolicus. Gene 2000, 247
(1-2), 137–143.
(23) Gabelsberger, J.; Liebl, W.; Schlifer, K. H. Purification and proper-
ties of recombinant β-glucosidase of the hyperthermophilic bacterium
Thermotoga maritima. Appl. Microbiol. Biotechnol. 1993, 40, 44–52.
1961
dx.doi.org/10.1021/jf1046915 |J. Agric. Food Chem. 2011, 59, 1954–1961