An initial minimization of the complex was performed with
00 steps of SD followed by 1500 steps of Polak-Ribiere Con-
19 R. R. Schmidt and E. R u¨ cker, Tetrahedron Lett., 1980, 21, 1421–
1
424.
5
2
2
0 R. R. Schmidt, Angew. Chem., Int. Ed. Engl., 1986, 25, 212–235.
jugate Gradients (CG). The minimized complex was solvated
in two different cubic boxes, fulfilling the requirement of a
minimum distance of 1.2 nm between any atom of the complex
and the faces of the box. The first box was filled with SPC
water molecules to reproduce the usual experimental conditions
for the enzyme, while the second one was filled with a mixture
of SPC water molecules and 5 molecules trying to reproduce
the conditions for the stereochemistry change presented in this
work. Then, for each box, a new minimization procedure of 500
steps of SD and 3000 steps of CG was followed. The systems
were equilibrated for 100 ps at 298 K (NVT conditions) and
another 100 ps at 298 K and 1 atm (NPT conditions). Finally, 1
ns production simulations were carried out.
1 H. Paulsen, Angew. Chem., Int. Ed. Engl., 1982, 21, 155–173.
22 T. Usui, S. Kubota and H. Ohi, Carbohydr. Res., 1983, 244, 315–323.
23 M. J. Hernaiz and D. H. G. Crout, J. Mol. Catal. B: Enzym., 2000,
1
0, 403–408.
4 A. Vetere and S. Paoletti, Biochem. Biophys. Res. Commun., 1996,
19, 6–13.
2
2
25 K. Sakai, R. Katsumi, H. Ohi, T. Usui and Y. Ishido, J. Carbohydr.
Chem., 1992, 11, 553–565.
2
2
2
2
3
3
3
6 T. Usui, S. Morimoto, Y. Hayakawa, M. Kawaguchi, T. Murata, Y.
Matahira and Y. Nishida, Carbohydr. Res., 1996, 285, 29–39.
7 J. I. Garc ´ı a, H. Garc ´ı a-Mar ´ı n, J. A. Mayoral and P. P e´ rez, Green
Chem., 2010, 12, 426–434.
8 C. Reichardt, Solvents and Solvent Effects in Organic Chemistry,
Wiley-VCH, Weinheim, 2003.
9 D.-P. Hong, M. Hoshino, R. Kuboi and Y. Goto, J. Am. Chem. Soc.,
1999, 121, 8427–8433.
0 A. M. P. Mainar, J., J. I. Garc ´ı a, F. M. Royo and J. S. Urieta, J. Chem.
Soc., Faraday Trans., 1998, 94, 3595–3599.
Acknowledgements
1 C. Laurence, P. Nicolet and C. Reichardt, Bull. Soc. Chim. Fr., 1987,
1
001–1005.
This work was supported by two research projects of the
Spanish MICINN (Ministerio de Ciencia e Innovaci o´ n de
Espa n˜ a) CTQ2009-11801 and CTQ2008-05138, and one Eu-
ropean project (FP-62003-NMP-SMF-3, proposal 011774-2).
Manuel Sandoval was supported by a Ph.D fellowship granted
from the Universidad Nacional de Costa Rica.
2 J. Wagner and H. Grill, ed. US. Pat. 3888994., U.S.A, 1975.
33 D. A. Blake, H. F. Coscorbi,bR. S. Rozman and F. J. Meyer, Toxicol.
Appl. Pharmacol., 1969, 15, 83.
3
4 M. J. Murphy, D. A. Dunbar and L. S. Kaminsky, Toxicol. Appl.
Pharmacol., 1983, 71, 84–92.
35 J. Bigorra, V. Fabry, M. Perez, J. V. Sinisterra and M. J. Hernaiz.
European Patent EP 08011388, 2008.
3
6 A. Vetere and S. Paoletti, Biochim. Biophys. Acta – General Subjects,
1
998, 1380, 223–231.
37 Y. Ito and T. Sasaki, Biosci., Biotechnol., Biochem., 1997, 61, 1270–
276.
Notes and references
1
1
P. T. W. Anastas, J. C., Green Chemistry: Theory and Practice, Oxford
University Press, New York, 1998.
38 X. X. Zeng, R. Yoshino, T. Murata, K. Ajisaka and T. Usui,
Carbohydr. Res., 2000, 325, 120–131.
39 D. Zahner and R. Hakenbeck, J. Bacteriol., 2000, 182, 5919–5921.
40 R. Zeleny, F. Altmann and W. Praznik, Anal. Biochem., 1997, 246,
96–101.
41 D. H. Juers, T. D. Heightman, A. Vasella, J. D. McCarter, L.
Mackenzie, S. G. Withers and B. W. Matthews, Biochemistry, 2001,
40, 14781–14794.
42 V. Spiwok, P. Lipovov a´ , T. Sk a´ lov a´ , E. Buchtelov a´ , J. Hasek and B.
Kr a´ lov a´ , Carbohydr. Res., 2004, 339, 2275–2280.
43 N. Br a´ s, P. Fernandes and M. Ramos, Theor. Chem. Acc., 2009, 122,
283–296.
2
3
4
P. T. Anastas, Chem. Rev., 2007, 107, 2167–2168.
I. T. Horvath and P. T. Anastas, Chem. Rev., 2007, 107, 2169–2173.
R. W. Kates, W. C. Clark, R. Corell, J. M. Hall, C. C. Jaeger, I.
Lowe, J. J. McCarthy, H. J. Schellnhuber, B. Bolin, N. M. Dickson,
S. Faucheux, G. C. Gallopin, A. Grubler, B. Huntley, J. Jager, N. S.
Jodha, R. E. Kasperson, A. Mabogunje, P. Matson, H. Mooney, B.
Moore, T. O’Riordan and U. Svedin, Science, 2001, 292, 641–642.
J. S. Dordick, Enzyme Microb. Technol., 1989, 11, 194–211.
S. V. Kamat, E. J. Beckman and A. J. Russell, J. Am. Chem. Soc.,
5
6
1
993, 115, 8845–8846.
7
8
K. Ryu and J. S. Dordick, Biochemistry, 1992, 31, 2588–2598.
44 L. Fourage, M. Helbert, P. Nicolet and B. Colas, Anal. Biochem.,
S. Tawaki and A. M. Klibanov, J. Am. Chem. Soc., 1992, 114, 1882–
1999, 270, 184–185.
1
884.
45 M. M. Bradford, Anal. Biochem., 1976, 72, 248–254.
46 U. K. Laemmli, Nature, 1970, 227, 680–685.
47 T. Tatusova and T. Madden, FEMS Microbiol. Lett., 1999, 174, 247–
250.
9
C. R. Wescott and A. M. Klibanov, J. Am. Chem. Soc., 1993, 115,
1
629–1631.
1
1
1
1
1
1
0 M. J. Hernaiz, A. R. Alc a´ ntara, J. I. Garc ´ı a and J. V. Sinisterra,
Chem.–Eur. J., 2010, 16, 9422–9437.
48 R. C. Edgar, Nucleic Acids Res., 2004, 32, 1792–1797.
49 T. Schwede, J. R. Kopp, N. Guex and M. C. Peitsch, Nucleic Acids
Res., 2003, 31, 3381–3385.
50 P. Bates, L. Kelley, R. MacCallum and M. Sternberg, Proteins:
Struct., Funct., Genet., 2001, 45, 39–46.
51 B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, J. Chem.
Theory Comput., 2008, 4, 435–447.
52 R. Laskowski, M. MacArthur, D. Moss and J. M. Thornton, J. Appl.
Crystallogr., 1993, 26, 283–291.
53 C. Colovos and T. Yeates, Protein Sci., 1993, 2, 1511–1519.
54 D. Eisenberg, R. L u¨ thy and J. Bowie, Methods in enzymology, 1997,
277, 396., 1997, 277–396.
55 G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D.
S. Goodsell and A. J. Olson, J. Comput. Chem., 2009, 30, 2785–2791.
56 C. Janssen, I. Nielsen, M. Leininger, E. Valeev and E. Seidl, Autodock
4.2, Scripps Research Institute, 2009.
57 R. Suardiaz, M. Maestre, E. Su a´ rez and C. P e´ rez, THEOCHEM,
2006, 778, 21–25.
58 C. Resende and G. F. L Prado, THEOCHEM, 2007, 847, 93–100.
1 M. S. P e´ rez, J. V. Sinisterra and M. J. Hern a´ iz, Curr. Org. Chem.,
2
010, 14, 2366–2383.
2 A. Wolfson, C. Dlugy and Y. Shotland, Environ. Chem. Lett., 2007,
5
, 67–71.
3 A. Wolfson, C. Dlugy, D. Tavor, J. Blumenfeld and Y. Shotland,
Tetrahedron: Asymmetry, 2006, 17, 2043–2045.
4 L. Andrade, L. Piovan and M. D. Pasquini, Tetrahedron: Asymmetry,
2
009, 20, 1521–1525.
5 M. E. C. Caines, H. Zhu, M. Vuckovic, L. M. Willis, S. G. Withers,
W. W. Wakarchuk and N. C. J. Strynadka, J. Biol. Chem., 2008, 283,
3
1279–31283.
1
6 H. Shirato, S. Ogawa, H. Ito, T. Sato, A. Kameyama, H. Narimatsu,
Z. Xiaofan, T. Miyamura, T. Wakita, K. Ishii and N. Takeda, J.
Virol., 2008, 82, 10756–10767.
1
1
7 G. F. Springer, Science, 1984, 224, 1198–1206.
8 G. F. Springer, P. R. Desai, W. Wise, S. C. Carlstedt, H. Tegt-
meyer, R. Stein and E. F. Scanlon, Immunol Ser, 1990, 53, 587–
6
12.
This journal is © The Royal Society of Chemistry 2011
Green Chem., 2011, 13, 2810–2817 | 2817