6684 J. Am. Chem. Soc., Vol. 121, No. 28, 1999
Merkx and AVerill
which also have this sequence motif, show the presence of a
dinuclear metal center which resembles that of KBPAP, although
the identity of the metals is still the subject of some debate.21-23
enzyme is thus postulated to make use of the strong Lewis
acidity of Fe3+ to generate a hydroxide ion, even at the weakly
acidic pH where it is active (pH optimum ∼6).
In general, trivalent metal ions are stronger Lewis acids than
divalent metal ions. As such, they are widely used as catalysts
in organic synthesis, e.g., the Friedel-Crafts catalyst AlCl3.48
Ligand exchange reactions are, however, generally slower at
trivalent metal ions than at divalent metal ions.49 This fact has
been put forward to explain why the vast majority of metallo-
hydrolases contain divalent metal ions, in particular zinc and
magnesium.50 Despite this apparent disadvantage of trivalent
metal ions, several enzymes are now known to make use of the
strong Lewis acidity of a trivalent metal ion while exhibiting
fairly high turnover numbers: the PAPs and possibly other
phosphatases with the same sequence motif (Fe3+),2,22 nitrile
hydratases (Fe3+ or Co3+),51,52 and intradiol dioxygenases
(Fe3+).53,54
The metal centers in Uf, BSPAP, and KBPAP have been
studied extensively by various spectroscopic techniques, includ-
ing EPR,5,7,9,10,24,25 Mo¨ssbauer,25-30 resonance Raman,7,25,31
NMR,32-34 magnetic susceptibility,5,25,35-37 MCD,38 ENDOR/
ESEEM,39 and EXAFS.40-43 From these studies and from the
X-ray structures of KBPAP and its phosphate and tungstate
complexes,12,13 the structure of the dinuclear metal center in
PAP is now well characterized. Relatively little is known,
however, about the mechanism by which PAPs catalyze the
hydrolysis of phosphate esters. From a chiral substrate experi-
ment with BSPAP, it is known that hydrolysis results in net
inversion of the configuration around phosphorus, which
strongly suggests the direct attack of water/hydroxide on the
phosphate ester without the formation of a phosphorylated
enzyme intermediate.44 Stopped-flow measurements on the
reaction of phosphate with uteroferrin suggest a rapid binding
A classical approach for investigating the role of a metal ion
in enzymatic catalysis is substitution by another metal and
characterization of the resulting perturbation in spectroscopic
and/or enzymatic properties. We have recently reported that both
of the iron ions in BSPAP can be specifically replaced by other
metal ions.8 By preparing GaFe-BSPAP and GaZn-BSPAP, we
showed that the ferric iron can be replaced by Ga3+ without
major effects on kinetics parameters and pH optima. The
coordination chemistry of Fe3+ and Ga3+ is, however, known
to be very similar. Ga3+ and Fe3+ have similar ionic radii, they
show similar ligand exchange rates, and their Lewis acidities
are comparable.55 In the present study, we probe the role of the
trivalent metal ion by the preparation and characterization of
metal-substituted BSPAP forms of the general formula MIII-
ZnII, with two trivalent metal ions that differ significantly from
iron: aluminum and indium. The ionic radius of Al3+ is smaller
than that of Fe3+, while that of In3+ is larger.56 [Al(H2O)6]3+ is
also significantly less acidic than is [Fe(H2O)6]3+ or [Ga-
of phosphate to the Fe2+ 45,46
A mechanism has been proposed
.
in which the phosphate ester also rapidly binds to the Fe2+
,
followed by attack of an Fe3+-bound hydroxide ion.13,44,47 The
(21) Wang, X.; Culotta, V. C.; Klee, C. B. Nature 1996, 383, 434-437.
(22) Rusnak, F.; Yu, L.; Mertz, P. J. Biol. Inorg. Chem. 1996, 1, 388-
396.
(23) Chu, Y.; Lee, E. Y. C.; Schlender, K. K. J. Biol. Chem. 1996, 271,
2574-2577.
(24) Antanaitis, B. C.; Aisen, P.; Lilienthal, H. R.; Roberts, R. M.; Bazer,
F. W. J. Biol. Chem. 1980, 255, 11204-11209.
(25) Averill, B. A.; Davis, J. C.; Burman, S.; Zirino, T.; Sanders-Loehr,
J.; Loehr, T. M.; Sage, J. T.; Debrunner, P. G. J. Am. Chem. Soc. 1987,
109, 3760-3767.
(26) Debrunner, P. G.; Hendrich, M. P.; de Jersey, J.; Keough, D. T.;
Sage, J. T.; Zerner, B. Biochim. Biophys. Acta 1983, 745, 103-106.
(27) Cichutek, K.; Witzel, H.; Parak, F. Hyperfine Interact. 1988, 42,
885-888.
(28) Sage, J. T.; Xia, Y.-M.; Debrunner, P. G.; Keough, D. T.; de Jersey,
J.; Zerner, B. J. Am. Chem. Soc. 1989, 111, 7239-7247.
(29) Suerbaum, H.; Ko¨rner, M.; Witzel, H.; Althaus, E.; Mosel, B.-D.;
Mu¨ller-Warmuth, W. Eur. J. Biochem. 1993, 214, 313-321.
(30) Rodriguez, J. H.; Ok, H. N.; Xia, Y. M.; Debrunner, P. G.; Hinrichs,
B. E.; Meyer, T.; Packard, N. H. J. Phys. Chem. 1996, 100, 6849-6862.
(31) Gaber, B. P.; Sheridan, J. P.; Bazer, F. W.; Roberts, R. M. J. Biol.
Chem. 1979, 254, 8340-8342.
(32) Lauffer, R. B.; Antanaitis, B. C.; Aisen, P.; Que, L., Jr. J. Biol.
Chem. 1983, 258, 14212-14218.
(33) Scarrow, R. C.; Pyrz, J. W.; Que, L., Jr. J. Am. Chem. Soc. 1990,
112, 657-665.
(H2O)6]3+ 57
. When studying catalytic reactions involving ligand
exchange at a metal, it is important to consider the ligand
exchange rates typical of that metal ion. Thus, ligand exchange
rates are typically slow for Al3+ complexes in comparison to
the corresponding Fe3+ or Ga3+ complexes, while they are
higher for In3+ complexes.49,58-60 As a result, our findings, that
the AlIIIZnII-BSPAP form is ∼60% active as the FeIIIZnII and
GaIIIZnII forms, with a kcat of ∼2000 s-1, while the InIIIZnII
form is totally inactive, are rather surprising. This first
demonstration of an actiVe aluminum-containing enzyme is also
in conflict with the axiom that the relative slow ligand exchange
(34) Wang, Z.; Ming, L.-J.; Que, L., Jr.; Vincent, J. B.; Crowder, M.
W.; Averill, B. A. Biochemistry 1992, 31, 5263-5268.
(35) Sinn, E.; O’Connor, C. J.; de Jersey, J.; Zerner, B. Inorg. Chim.
Acta 1983, 78, L13-L15.
(36) Day, E. P.; David, S. S.; Peterson, J.; Dunham, W. R.; Bonvoison,
J. J.; Sands, R. H.; Que, L., Jr. J. Biol. Chem. 1988, 263, 15561-15567.
(37) Gehring, S.; Fleischhauer, P.; Behlendorf, M.; Hu¨ber, M.; Loro¨sch,
J.; Haase, W.; Dietrich, M.; Witzel, H.; Lo¨cke, R.; Krebs, B. Inorg. Chim.
Acta 1996, 252, 13-17.
(48) March, J. AdVanced organic chemistry: reactions, mechanisms, and
structure; Wiley-Interscience: New York, 1992; pp 534-542.
(49) Wilkins, R. G. Kinetics and mechanism of reactions of transition
metal complexes; VCH: Weinheim, 1991; pp 199-205.
(50) Frau´sto da Silva, J. J. R.; Williams, R. J. P. The biological chemistry
of the elements: the inorganic chemistry of life; Oxford University Press:
Oxford, 1991; pp 101-105.
(38) Yang, Y. S.; McCormick, J. M.; Solomon, E. I. J. Am. Chem. Soc.
1997, 119, 11832-11842.
(39) Doi, K.; McCracken, J.; Peisach, J.; Aisen, P. J. Biol. Chem. 1988,
263, 5757-5763.
(51) Huang, W. J.; Jia, J.; Cummings, J.; Nelson, M.; Schneider, G.;
Lindqvist, Y. Structure 1997, 5, 691-699.
(40) Kauzlarich, S. M.; Teo, B. K.; Zirino, T.; Burman, S.; Davis, J. C.;
Averill, B. A. Inorg. Chem. 1986, 25, 2781-2785.
(41) True, A. E.; Scarrow, R. C.; Randall, C. R.; Holz, R. C.; Que, L.,
Jr. J. Am. Chem. Soc. 1993, 115, 4246-4255.
(52) Payne, M. S.; Wu, S. J.; Fallon, R. D.; Tudor, G.; Stieglitz, B.;
Turner, I. M.; Nelson, M. J. Biochemistry 1997, 36, 5447-5454.
(53) Que, L., Jr.; Ho, R. J. N. Chem. ReV. 1996, 96, 2607-2624.
(54) Frazee, R. W.; Orville, A. M.; Dolbeare, K. B.; Yu, H.; Ohlendorf,
D. H.; Lipscomb, J. D. Biochemistry 1998, 37, 2131-2144.
(55) Martin, R. B. Metal Ions Biol. Syst. 1988, 24, 1-57.
(56) Shannon, R. D. Acta Crystallogr. 1976, A32, 751-767.
(57) Baes, C. F., Jr.; Mesmer, R. E. The hydrolysis of cations; Wiley-
Interscience: New York, 1976.
(58) Crumbliss, A. L.; Garrison, J. M. Comments Inorg. Chem. 1988, 8,
1-26.
(59) Kowall, T.; Caravan, P.; Bourgeois, H.; Helm, L.; Rotzinger, F. P.;
Merbach, A. E. J. Am. Chem. Soc. 1998, 120, 6569-6577.
(60) Kido, H.; Saito, K. J. Am. Chem. Soc. 1988, 110, 3187-3190.
(42) Wang, X.; Randall, C. R.; True, A. E.; Que, L., Jr. Biochemistry
1996, 35, 13946-13954.
(43) Wang, X.; Que, L., Jr. Biochemistry 1998, 37, 7813-7821.
(44) Mueller, E. G.; Crowder, M. W.; Averill, B. A.; Knowles, J. R. J.
Am. Chem. Soc. 1993, 115, 2974-2975.
(45) Aquino, M. A. S.; Lim, J.-S.; Sykes, A. G. J. Chem. Soc., Dalton
Trans. 1992, 2135-2136.
(46) Aquino, M. A. S.; Lim, J.-S.; Sykes, A. G. J. Chem. Soc., Dalton
Trans. 1994, 429-436.
(47) Dietrich, M.; Mu¨nstermann, D.; Suerbaum, H.; Witzel, H. Eur. J.
Biochem. 1991, 199, 105-113.