Journal of the American Chemical Society
Article
(22) Jochens, H.; Stiba, K.; Savile, C.; Fujii, R.; Yu, J. G.;
Gerassenkov, T.; Kazlauskas, R. J.; Bornscheuer, U. T. Angew. Chem.,
Int. Ed. 2009, 48, 3532.
(23) Coelho, P. S.; Wang, Z. J.; Ener, M. E.; Baril, S. A.; Kannan, A.;
Arnold, F. H.; Brustad, E. M. Nat. Chem. Biol. 2013, 9, 485.
(24) Gatti-Lafranconi, P.; Hollfelder, F. ChemBioChem 2013, 14, 285.
(25) Regan, L.; Degrado, W. F. Science 1988, 241, 976.
(26) Kamtekar, S.; Schiffer, J. M.; Xiong, H. Y.; Babik, J. M.; Hecht,
M. H. Science 1993, 262, 1680.
(27) Robertson, D. E.; Farid, R. S.; Moser, C. C.; Urbauer, J. L.;
Mulholland, S. E.; Pidikiti, R.; Lear, J. D.; Wand, A. J.; Degrado, W. F.;
Dutton, P. L. Nature 1994, 368, 425.
(28) Huang, S. S.; Koder, R. L.; Lewis, M.; Wand, A. J.; Dutton, P. L.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5536.
environmental compatibility with respect to prevalent inorganic
catalysts. We have identified an M13 bacteriophage clone with
novel catalytic properties and thermal stability, in the process
demonstrating M13 to be a versatile, high-surface area platform
for biocatalytic engineering. Future work will build on these
results by expanding M13 bacteriophage library diversity,
improving selection methodology, evolving clones toward
unique reactions, and fabricating stable catalytic macro-
structures.
ASSOCIATED CONTENT
■
S
* Supporting Information
(29) Farid, T. A.; Kodali, G.; Solomon, L. A.; Lichtenstein, B. R.;
Sheehan, M. M.; Fry, B. A.; Bialas, C.; Ennist, N. M.; Siedlecki, J. A.;
Zhao, Z. Y.; Stetz, M. A.; Valentine, K. G.; Anderson, J. L. R.; Wand, A.
J.; Discher, B. M.; Moser, C. C.; Dutton, P. L. Nat. Chem. Biol. 2013, 9,
826.
(30) Das, A.; Hecht, M. H. J. Inorg. Biochem. 2007, 101, 1820.
(31) Zastrow, M. L.; Peacock, A. F. A.; Stuckey, J. A.; Pecoraro, V. L.
Nat. Chem. 2012, 4, 118.
Experimental procedures, electron microscopy, and other
supporting data. This material is available free of charge via
AUTHOR INFORMATION
■
Corresponding Author
(32) Broo, K. S.; Brive, L.; Ahlberg, P.; Baltzer, L. J. Am. Chem. Soc.
1997, 119, 11362.
Notes
(33) Patel, S. C.; Bradley, L. H.; Jinadasa, S. P.; Hecht, M. H. Protein
Sci. 2009, 18, 1388.
The authors declare no competing financial interest.
(34) Benson, D. E.; Wisz, M. S.; Liu, W. T.; Hellinga, H. W.
Biochemistry 1998, 37, 7070.
(35) Bolon, D. N.; Mayo, S. L. Proc. Natl. Acad. Sci. U.S.A. 2001, 98,
ACKNOWLEDGMENTS
■
We thank Jacqueline Ohmura for the image in Supplementary
Figure 4b as well as the Center for Materials Science and
Engineering for access to transmission electron microscopy for
both images in Supplementary Figure 4. Additionally, we would
like to acknowledge the Swanson Biotechnology Core at the
MIT Koch Institute for Integrative Cancer Research for
bacteriophage DNA sequencing.
14274.
(36) Rothlisberger, D.; Khersonsky, O.; Wollacott, A. M.; Jiang, L.;
DeChancie, J.; Betker, J.; Gallaher, J. L.; Althoff, E. A.; Zanghellini, A.;
Dym, O.; Albeck, S.; Houk, K. N.; Tawfik, D. S.; Baker, D. Nature
2008, 453, 190.
(37) Hunt, J. A.; Fierke, C. A. J. Biol. Chem. 1997, 272, 20364.
(38) Marvin, D. A.; Hale, R. D.; Nave, C.; Citterich, M. H. J. Mol.
Biol. 1994, 235, 260.
(39) Marvin, D. A.; Welsh, L. C.; Symmons, M. F.; Scott, W. R. P.;
Straus, S. K. J. Mol. Biol. 2006, 355, 294.
(40) Eriksson, A. E.; Jones, T. A.; Liljas, A. Proteins 1988, 4, 274.
(41) Pocker, Y.; Stone, J. T. J. Am. Chem. Soc. 1965, 87, 5497.
(42) Host, G.; Martensson, L. G.; Jonsson, B. H. Biochim. Biophys.
Acta, Proteins Proteomics 2006, 1764, 1601.
(43) Nicoll, A. J.; Allemann, R. K. Org. Biomol. Chem. 2004, 2, 2175.
(44) Chen, L.; Bromberg, L.; Hatton, T. A.; Rutledge, G. C. Polymer
2007, 48, 4675.
(45) Savile, C. K.; Janey, J. M.; Mundorff, E. C.; Moore, J. C.; Tam,
S.; Jarvis, W. R.; Colbeck, J. C.; Krebber, A.; Fleitz, F. J.; Brands, J.;
Devine, P. N.; Huisman, G. W.; Hughes, G. J. Science 2010, 329, 305.
(46) Wheals, A. E.; Basso, L. C.; Alves, D. M. G.; Amorim, H. V.
Trends Biotechnol. 1999, 17, 482.
(47) Yamashita, M. M.; Wesson, L.; Eisenman, G.; Eisenberg, D.
Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 5648.
(48) Gomez-Tagle, P.; Vargas-Zuniga, I.; Taran, O.; Yatsimirsky, A.
K. J. Org. Chem. 2006, 71, 9713.
(49) Love, K. R.; Bagh, S.; Choi, J.; Love, J. C. Trends Biotechnol.
2013, 31, 16.
REFERENCES
■
(1) Koeller, K. M.; Wong, C. H. Nature 2001, 409, 232.
(2) Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.;
Witholt, B. Nature 2001, 409, 258.
(3) Gotor-Fernan
40, 111.
́
dez, V.; Brieva, R.; Gotor, V. J. Mol. Catal. B 2006,
(4) The Application of Biotechnology to Industrial Sustainability - A
Primer; OECD Publishing: Paris, France, 2001.
(5) White, N. J. Science 2008, 320, 330.
(6) Schmidt-Dannert, C.; Umeno, D.; Arnold, F. H. Nat. Biotechnol.
2000, 18, 750.
(7) Arnold, F. H. Nature 2001, 409, 253.
(8) Joseph, B.; Ramteke, P. W.; Thomas, G. Biotechnol. Adv. 2008, 26,
457.
(9) Nielsen, J.; Fussenegger, M.; Keasling, J.; Lee, S. Y.; Liao, J. C.;
Prather, K.; Palsson, B. Nat. Chem. Biol. 2014, 10, 319.
(10) Reetz, M. T. J. Am. Chem. Soc. 2013, 135, 12480.
(11) Kim, J.; Jia, H. F.; Wang, P. Biotechnol. Adv. 2006, 24, 296.
(12) Klibanov, A. M. Nature 2001, 409, 241.
(13) Serdakowski, A. L.; Dordick, J. S. Trends Biotechnol. 2008, 26,
48.
(14) Perry, L. J.; Wetzel, R. Science 1984, 226, 555.
(15) Zhou, Z.; Hartmann, M. Chem. Soc. Rev. 2013, 42, 3894.
(16) Bommarius, A. S.; Paye, M. F. Chem. Soc. Rev. 2013, 42, 6534.
(17) Rodrigues, R. C.; Berenguer-Murcia, A.; Fernandez-Lafuente, R.
Adv. Synth. Catal. 2011, 353, 2216.
(18) Moore, J. C.; Arnold, F. H. Nat. Biotechnol. 1996, 14, 458.
(19) Lipovsek, D.; Antipov, E.; Armstrong, K. A.; Olsen, M. J.;
Klibanov, A. M.; Tidor, B.; Wittrup, K. D. Chem. Biol. 2007, 14, 1176.
(20) Giger, L.; Caner, S.; Obexer, R.; Kast, P.; Baker, D.; Ban, N.;
Hilvert, D. Nat. Chem. Biol. 2013, 9, 494.
(21) Turner, N. J. Nat. Chem. Biol. 2009, 5, 567.
G
dx.doi.org/10.1021/ja506346f | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX