1342
J Solution Chem (2014) 43:1331–1343
References
1. Iranzo, O., Kovalecsky, A.Y., Morow, J.R.: Physical and kinetic analysis of the cooperative role of
metal ions in catalysis of phosphodiester cleavage by a dinuclear Zn(II) complex. J. Am. Chem. Soc.
125, 1988–1993 (2003)
2
3
4
. Feng, F.M., Cai, S.L., Liu, F.A., Xie, J.Q.: Studies of DNA-binding and DNA-cutting mechanism of an
azamacrocyclic cerium complex with carboxyl branch. Prog. Reac. Kin. Mech. 38, 283–294 (2013)
. Tonde, S.S., Kumbhar, A.S., Padhye, S.B.: Self-activating nuclease activity of copper (II) complexes of
hydroxyl-rich ligands. J. Inorg. Biochem. 100, 51–57 (2006)
. Ferreira, D.E.C., Almeida, W.B.D., Neves, A.: Theoretical investigation of the reaction mechanism for
the phosphate diester hydrolysis using an asymmetric dinuclear metal complex as a biomimetic model
of the purple acid phosphatase enzyme. Phys. Chem. Chem. Phys. 10, 7039–7046 (2008)
. Katada, H., Seino, H., Mizobe, Y., Sumaoka, J., Komiyama, M.: Crystal structure of Ce((IV)/dipico-
linate complex as catalyst for DNA hydrolysis. J. Biol. Inorg. Chem. 13, 249–255 (2008)
. Kuchma, M.H., Komanski, C., Colon, J., Teblum, A., Masunov, A.E., Alvarado, B., Babu, S., Seal, S.,
Summy, J., Baker, C.H.: Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide
nanoparticles. Nanomedicine: Nanotech. Biol. Med. 6, 738–744 (2010)
5
6
7. Rossi, L.M., Neves, A., Horner, R.: Hydrolytic activity of a dinuclear copper(II, II) complex in
phosphate diester and DNA cleavage. Inorg. Chim. Acta 337, 366–370 (2002)
8
. Jiang, W.D., Xu, B., Lin, Q., Li, J.Z., Liu, F., Zeng, X.C., Chen, H.: Metal-promoted hydrolysis of
bis(p-nitrophenyl) phosphate by trivalent manganese complexes with Schiff base ligands in gemini
micellar solution. Coll. Surf. A: Physicochem. Eng. Aspects 315, 103–109 (2008)
9. Gunnlaugsson, T., O’Brien, J.E., Mulready, S.: Glycine–alanine conjugated macrocyclic lanthanide ion
complexes as artificial ribonucleases. Tet. Lett 43, 8493–8497 (2002)
1
1
1
0. Maldonado, A.L., Yatsimirsky, A.K.: Kinetics of phosphodiester cleavage by differently generated
cerium(IV) hydroxo species in neutral solutions. Org. Biomolec. Chem. 3, 2859–2867 (2005)
1. Jurek, P.E., Jurek, A.M., Martell, A.E.: Phosphate diester hydrolysis by mono- and dinuclear lanthanum
complexes with an unusual third-order dependence. Inorg. Chem. 39, 1016–1020 (2000)
2. Penkova, L.V., Macia, A., Akimova, E.V.R.: Efficient catalytic phosphate ester cleavage by binuclear
zinc(II) pyrazolate complexes as functional models of metallophosphatases. Inorg. Chem. 48,
6960–6971 (2009)
1
3. Tjioet, L., Joshit, T., Forsytht, C.M.B., Murray, K.S., Brugger, J., Graham, B., Spiccia, L.: Phospho-
diester cleavage properties of copper(II) complexes of 1,4,7-triazacyclononane ligands bearing single
alkyl guanidine pendants. Inorg. Chem. 51, 939–953 (2012)
1
1
1
1
4. Jurek, P., Martell, A.: Catalysis of hydrolysis of a phosphate diester by mono-and dinuclear macrocyclic
zinc(II) complexes. Inorg. Chim. Acta 287, 47–51 (1999)
5. Rawji, G.H., Yamada, M., Sadler, N.P., Milburn, R.M.: Cobalt(III)-promoted hydrolysis of 4-nitro-
phenyl phosphate: the role of dinuclear species. Inorg. Chim. Acta 303, 168–174 (2000)
6. Mancin, F., Tecill, P.N.: Zinc(II) complexes as hydrolytic catalysts of phosphate diester cleavage: from
model substrates to nucleic acids. New J. Chem. 31, 800–817 (2007)
7. Ichikawa, K., Tarnai, M., Uddin, M.K., Nakata, K., Sato, S.: Hydrolysis of natural and artificial
phosphoesters using zinc model compound with a histidine-containing pseudopeptide. J. Inorg. Bio-
chem. 91, 437–450 (2002)
1
8. Manseki, K., Nakamura, O., Horikawa, K., Sakamoto, M., Sakiyama, H., Nishida, Y., Sadaoka, Y.,
Okawa, H.: Synthesis of copper(II)–lanthanum(III) complex of a dinucleating macrocycle and its
hydrolytic property for 4-nitrophenylphosphate. Inorg. Chem. Comm. 5, 56–58 (2002)
9. Jiang, B.Y., Xiang, Y., Du, J., Xie, J.Q., Hu, C.W., Zeng, X.C.: Hydrolysis of p-nitrophenyl picolinate
catalyzed by divalent metal ion complexes containing imidazole groups in micellar solution. Coll. Surf.
A: Physicochem. Eng. Aspects 235, 145–151 (2004)
1
20. Fendler, J.H.: Catalysis in Micellar and Macromolecular Systems, 3rd edn. 102. Academic Press, New
York (1975)
2
1. You, J.S., Yu, X.Q., Su, X.Y.: Hydrolytic metalloenzyme models enantioselective hydrolysis of long
chain a-amino acid esters by chiral metallomicelles composed of lipophilic L-histidinol. J. Mol. Cat.A:
Chem 202, 17–22 (2003)
2
2
2. Xu, J.D., Ni, S.S., Lin, Y.J.: Syntheses and characterization of 5,5,7,12,12,14-hexamethyl1-, 4,8,11-
tetraazacyclotetradecane-N-acetic acid (H L1) and its transition-metal complexes: crystal structures of
HL1.2HBr.H O, [NiL1(H O)]Br, and [NiL1(NCS)]H O. Inorg. Chem. 27, 4651–4657 (1988)
2 2 2
3. Jiang, F.B., Jiang, B.Y., Chen, Y., Yu, X.Q., Zeng, X.C.: Metallomicellar catalysis: effects of bridge-
connecting ligands on the hydrolysis of PNPP catalyzed by Cu(II) complexes of ethoxyl-diamine
ligands in micellar solution. J. Mol. Cat. A: Chem. 210, 9–16 (2004)
1
23